Influence of test quantity on loose sand shearing strength parameters

Šarūnas Skuodis, Arnoldas Norkus

Abstract


Investigation of the shear strength properties of Klaipėda sand by simple shear test is presented. The characteristic values of the angle of internal friction φk and the cohesion ck are obtained via the least squares method and various factors of influence are elucidated. The investigation reveals the test quantity to have a significant influence on the characteristic shear strength parameters for loose sand. The processed characteristic magnitude of the angle of internal friction varies within 16.140 (3 tests) and 27.020 (36 tests) bounds, that of the characteristic cohesion varies within -74.18 kPa (3 tests) and 1.12 kPa (36 tests) bounds. The above mentioned shear strength properties confirm the linear Mohr-Coulomb strength criterion obtained via processing the test data. The same scatter of characteristic shear strength parameters variation is obtained when the peak shear stress are recorded for horizontal displacement magnitude of 5 mm. In this case the obtained characteristic angle of the internal friction varies within the bounds of 17.380 (3 tests) and 26.79 0 (36 tests), and that of characteristic cohesion within various within -68.82 kPa (3 tests) and 1.18 kPa (36 tests) bounds. The authors recommend performing at least 18 experimental tests in order to avoid high influence on statistical coefficient of confidence level tα and on the number of degrees of freedom k.

Keywords:

simple shear test, method of least squares, angle of internal friction, cohesion, loose sand, constant vertical stress

Full Text:

PDF

References


Amšiejus, J.; Mackevičius, R.; Medzvieckas, J.; Sližytė, D.; Stragys, V. V., 2006. Gruntų fizinės ir mechaninės savybės: Laboratoriniai darbai [Soil physical and mechanical properties, Laboratory testing]. Vilnius: Tecnika. 164 p. (in Lithuanian). http://dx.doi.org/10.3846/855-S

Amšiejus, J.; Dirgėlienė, N.; Norkus, A., 2010. Analysis of methods for evaluation of soil shear strength parameters. International Conference on Modern building materialas, structures and techniques (MBMST), pp.1077-1082.

Amšiejus, J.; Kačianauskas, R.; Norkus, A.; Tumonis, L., 2010. Investigation of sand porosity via odometric testing. The Baltic Journal of Road and Bridge Engineering, 5(3), pp. 139-147. http://dx.doi.org/10.3846/bjrbe.2010.20

Bareither, C. A.; Edil, T. B.; Benson, C. H.; Mickelson, D. M., 2008. Geological and Physical Factors Affecting the friction angle of Compacted Soils. Journal of Geotechnical and Environmental Engineering, 134(10), pp. 1476-1489. http://dx.doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1476)

Bathurst, R. J.; Althoff, S.; Linnenbaum, P., 2008. Influence of Test Method on Direct Shear Behaviour of Segmental Retaining Wall Units. Geotechnical Testing Journal, 31(2), pp. 1-9.

Bond, A.; Harris, A., 2008. Decoding Eurocode 7, Taylor & Francis. 621p.

Chin, T. Y.; Sew, G. S., 2001.The determination of shear strength in residual soils for slope stability analysis. Seminar Cerun Kabangsaan, Cameron Highlands, 14-15 May, pp. 1-18.

CSN EN 1997-1:2004. Eurocode 7: Geotechnical design – Part 1: General rules, 168 p.

Dirgėlienė, N.; Norkus, A.; Amšiejus, J.; Skuodis, Š.; Žilionienė, D. Stress-strain analysis of sand subjected to triaxial loading. The Baltic Journal of Road and Bridge Engineering, 8(1), pp. 25-31.

Dundulis, K.; Gadeiskis, S., 2006. Influence of morphometric characteristics of sand particles on the strength parameters of sand soils in Lithuania. Geologija, 53, pp. 52-56.

Frank, R.; Bauduin, C.; Driscoll, R.; Kavvadas, M.; Krebs Ovesen, N.; Orr, T.; Schuppener, B., 2004. Designer’s guide to EN 1997-1. Eurocode 7: Geotechnical design – general rules. Thomas Telford Publishing, Thomas Telford Ltd, 1 Heron Quay, London. 216 p.

Ghazavi, M.; Hosseini, M.; Mollanouri, M. A., Comparison between Angle of Repose and Friction Angle of Sand. In: The 12th International Conference for International Association for Computer Methods and Advances in Geomechanics (IACMAG), in 1-6 October, 2008, Goa, India.

Huy, N. Q.; Tol, A. F.; Hölscher, P., 2006. Report: Laboratory investigation of the loading rate effects in sand. Delft University of Technology, Delft, the Netherlands, 46 p.

Kalhor, A., 2012. The shear strength analyses of soil with various compactions under vertical load in direct shear test. International Research Journal of Applied and Basic Sciences, 3, pp. 2815-2821.

McCullough, B. D.; Heiser, D. A., 2008. On the accuracy of statistical procedures in Microsoft Excel 2007. Computational Statistics & Data Analysis, 52(10), pp. 4570-4578. http://dx.doi.org/10.1016/j.csda.2008.03.004

Medzvieckas, J.; Gadeikis, S.; Dundulis, K., 2008. Properties of fine soils of Klaipėda port area. Geologija, 50(3), pp. 206-211. http://dx.doi.org/10.2478/v10056-008-0046-x

Nguyen, G., 2009. The analysis of factors influencing the values of soil shear strength parameters obtained by direct shear test. Studia Geotechnica et Mechanica, 31(1), pp. 51-72.

Olsson, U.; Engstrand, U.; Rupšys, P., 2007. Statistiniai metodai. Mokomoji knyga [Statistical methods. Course book], Akademija, 138p. (in Lithuanian).

Rice, J. A., 2010. Mathematical Statistics and Data Analysis. Third Edition. Thomson Brooks/Cole. 34 p.

Roopnarine, R.; Eudoixe, G.; Gay, D., 2012. Soil Physical Properties as Predictors of Soil Strength Indices: Trinidad Case Study. Geomaterials, 2012(2), pp. 1-9.

Rukšėnaitė, J., 2011. Impact of Factor Rotation Methods on Simulation Composite Indicators. Mathematical Modelling and Analysis, 16(3), pp. 418-431. http://dx.doi.org/10.3846/13926292.2011.602436

Skuodis, Š.; Norkus, A.; Dirgėlienė, N.; Šlečkuvienė, A., 2013. Sand shearing peculiarities using direct shear device. Proceedia Engineering, 11th International Conference on Modern building materialas, structures and techniques (MBMST), Amsterdam: Elsevier Science Ltd. 57, pp. 1052–1059.

Skuodis, Š.; Kavrus, A., 2012. Atskirų grunto dalelių formos kitimas prieš ir po spūdumo bandymo [Particle shape evaluation before and after compression]. Science - Future of Lithuania: Civil and Transport Engineering, Aviation Technologies, Vilnius: Technika, 4(4), pp. 340-345. (in Lithuanian).

Thay, S.; Likitlersuang, S.; Pipatpongsa, T. Monotonic and Cyclic Behaviour of Chiang Mai Sand Under Simple Shear Mode. Geotecnical and Geological Engineering, 31, pp. 67-82.

Thermann, K.; Gau, C.; Tiedemann, J., 2006. Shear strength parameters from direct shear tests – influencing factors and their significance. IAEG2006 Paper number 484, pp. 1-12.

Užpolevičius, B., 2006. Statinių tyrinėjimas, bandymas ir vertinimas [Building research, testing and evaluation]. Vilnius: Technika. 136 p. (in Lithuanian). http://dx.doi.org/10.3846/834-S

Wille Geotec Group., 2010. Universal direct shear test device ADS 1/3. Göttingen, Germany.

Zydron, T.; Zawisa, E., 2011. Shear strength investigation of soils in landslide areas. Geologija, 53(3), pp. 147-155. http://dx.doi.org/10.6001/geologija.v53i3.1895




DOI: 10.7250/iscconstrs.2014.28

Refbacks

  • There are currently no refbacks.