Variational formulations of the nonlinear equilibrium and stability problems of elastic rods

Vladimir Lalin, Daria Kushova

Abstract


This article is dedicated to the analysis of the nonlinear plane problems formulated in the special Cosserat-Timoshenko’s theory of elastic rods in Lagrangian description. The problems were solved using conjugate pairs of strain and stress vectors. Equivalence of the differential and variational formulations of the Lagrangian functional was proved. The differential equations of the plane problems of stability were obtained from the second variation of the Lagrangian functional. Deformations of bending, shear and tension-compression were taken into account while finding an exact solution for some stability problems.

Keywords:

large displacements and rotations, conjugate pairs of strain and stress vectors, the functional of variational formulation, the stability equations

Full Text:

PDF

References


Goloskokov, D.P.; Zhilin, P.A., Obshhaja nelinejnaja teorija uprugih sterzhnej s prilozheniem k opisaniju jeffekta Pojntinga. Deponiroano VINITI, pp.1912-V87 Dep., 20 s.

Elisseev, V.V., 1994. Mehanika uprugih sterzhnej. SPb, Izd-vo SPbGPU, 88 s.

Zhilin, P.A.; Sergeev, A.D., 1994. Ravnovesie i ustojchivost' tonkogo sterzhnja, nagruzhennogo konservativnym momentom, Mehanika i processy upravlenija. Trudy SPbGTU,448, S.47-56.

Zhilin, P.A.; Sergeev, A.D.; Tovstik, T.P., 1997. Nelinejnaja teorija sterzhnej i ee prilozhenija.Trudy XXIV letnej shkoly «Analiz i sintez nelinejnyh mehanicheskih kolebatel'nyh sistem». Sankt-Peterburg, S. 313-337.

Zhilin, P. A., 2007. Prikladnaja mehanika. Teorija tonkih uprugih sterzhnej. SPb, Izd-vo SPbGPU. 102 s.

Eliseev, V. V.; Zinov'eva, T. V., 2008. Mehanika tonkostennyh konstrukcij. Teorija sterzhnej. SPb, Izd-vo SPbGPU. 96 s.

Jelenic, G.; Crisfield, M. A., 1999. Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for static and dynamics. Comp. Meths. Appl. Mech. Eng. 171, pp. 141-171. http://dx.doi.org/10.1016/S0045-7825(98)00249-7

Shabana, A. A.; Yakoub, R. Y., 2001. Three dimensional absolute nodal coordinate formulation for beam elements: theory. ASME Journal of Mechanical Design, 123(4), pp. 606–613. http://dx.doi.org/10.1115/1.1410100

Reddy, J. N., 2004. An Introduction to Nonlinear Finite Element Analysis. Oxford University Press, 482 p. http://dx.doi.org/10.1093/acprof:oso/9780198525295.001.0001

Antman, S. S., 2005. Nonlinear problems of elasticity. Springer, Berlin Heidelberg New York, 835 p.

Gerstmayr, J.; Shabana, A. A., 2006. Analysis of thin beams and cables using the absolute nodal coordinate formulation. Nonlinear Dyn. 45(1-2), pp.109-130. http://dx.doi.org/10.1007/s11071-006-1856-1

Shabana, A. A., 2008. Computational continuum mechanics. Cambridge University Press, 349 p. http://dx.doi.org/10.1017/CBO9780511611469

Wriggers, P., 2008. Nonlinear finite element methods. Springer-Verlag Berlin Heidelberg, 566 p.

Krenk, S., 2009. Nonlinear modelling and analysis of solids and structures. Cambridge University Press, 361 р.

Ibrahimbegovic, А., 2009. Nonlinear Solid Mechanics. Springer Science+Business Media B.V. 585 p.

Lalin, V. V., 2004. Razlichnye formy uravnenij nelinejnoj dinamiki uprugih sterzhnej. Trudy SPbGPU, 489. S. 121-128.

Gelfand, I. M.; Fomin, S. V., 1961. Variacionnoe ischislenie. M.: GIFML, 228 s.

Lalin, V. V.; Rozin, L. A.; Kushova, D. A., 2013. Variacionnaja postanovka ploskoj zadachi geometricheski nelinejnogo deformirovanija i ustojchivosti uprugih sterzhnej. Inzhenerno-stroitel'nyj zhurnal. 1 (36), pp. 87-96.

Perelmuter, A. B.; Slivker, V. I., 2010. Ustojchivost' ravnovesija konstrukcij i rodstvennye problemy. Tom1. M.: Izdatel'stvo SKAD SOFT, 704 s.




DOI: 10.7250/iscconstrs.2014.14

Refbacks

  • There are currently no refbacks.