Application of KTH method for determination of latvian geoid model
Abstract
Keywords: |
gravimetric geoid, KTH method, Stoke’s formula, global geopotential model
|
Full Text: |
References
Abdalla, A.; Tenzer, R., 2010. The evaluation of the New Zealand’s geoid model using the KTH method. Geodesy and Cartography, 37(1), pp.5-14. http://dx.doi.org/10.3846/13921541.2011.558326
Agren, J., 2004. Regional Geoid Determination Methods for the Era of Satellite Gravimetry Numerical Investigations Using Synthetic Earth Gravity Models. Doctoral Dissertation in Geodesy. Stocholm: Royal Institute of Technology (KTH), Department of Infrastructure. 246 p.
Dahle, C.; Flechtner, F.; Gruber, C.; Koenig, D.; Koenig, R.; Michalak, G.; Neumayer, K.-H., 2012. GFZ GRACE Level-2 Processing Standards Document for Level-2 Product Release 0005. Scientific Technical Report – Data. Potsdam, 20 p.
Ellmann, A., 2005. Two deterministic and three stochastic modifications of Stokes's formula: A case study for the Baltic countries. Journal of Geodesy, 79(1-3), pp. 11-23. http://dx.doi.org/10.1007/s00190-005-0438-1
Jürgenson, H.; Liibusk, A.; Ellmann, A., 2008. Geoid profiles in the Baltic Sea determined using GPS and sea level surface. Geodezija ir Kartografija, 34(4), pp. 109-115.
Kaminskis, J., 2010. Geoid model for surveying in Latvia. In International FIG Congress 2010, FS 1C, 11–16 April, 2010, Sydney, Australia [online], [cited 23 August 2013]. Available at: www.fig.net/pub/fig2010/papers/fs01cfs01ckaminskis_4066.pdf
Kiamehr, R., 2006. Precise Gravimetric Geoid Model for Iran Based on GRACE and SRTM Data and the Least-Squares Modification of Stokes’ Formula with Some Geodynamic Interpretations. Doctoral Dissertation in Geodesy. Stocholm: Royal Institute of Technology (KTH), Department of Infrastructure. 89 p.
Kotsakis, C.; Sideris, M.G., 1999. On the adjustment of combined GPS/levelling/geoid networks. Journal of Geodesy, 73(8), pp. 412-421. http://dx.doi.org/10.1007/s001900050261
Liu, X. 2008. Global gravity field recovery from satellite-to-satellite tracking data with the acceleration approach. Publications on Geodesy 68. Delft: Nederlandse Commissie voor Geodesie, 226 p.
Sjöberg, L. E., 1986. Comparison of some methods of modifying Stokes' formula. Boll. Geod. Sci. Aff., 46(2), pp. 229-248.
Sjöberg, L. E., 1991. Refined least squares modification of Stokes formula. Manusc.Geod, 16, pp. 367-375.
Sjöberg, L. E., 2003a. A computational scheme to model geoid by the modified Stokes formula without gravity reductions. Journal of Geodesy, 74, pp. 255-268.
Sjöberg, L.E., 2003b. A general model of modifying Stokes formula and its least squares solution. Journal of Geodesy, 77, pp. 459-464. http://dx.doi.org/10.1007/s00190-003-0346-1
Torge, W., 1991. Geodesy. 2nd Edition. Berlin, New York: Walter de Gruyter. 245 p.
Wahr, J., 2008. Time-Variable Gravity from Satellites. Department of Physics and Cooperative Institute for Research in Environmental Sciences. University of Colorado. Available at: http://www.gps.caltech.edu/classes/ge167/file/Wahr_Gravity_treatise.pdf
ICGEM Interntional Center for Global Gravity Field Models. Available at: http://icgem.gfz-potsdam.de/ICGEM/
Latvian Geospatial Information agency. Available at: http://www.lgia.gov.lv .
Nordic Geodetic Commision. Available at: http:// http://www.nkg.fi/
U.S. Geological Survey. Available at: http://www.usgs.gov
DOI: 10.7250/iscconstrs.2014.11
Refbacks
- There are currently no refbacks.