Hybrid composite cable for prestressed suspension structure
Abstract
A prestressed suspension structure is a type of structures that allows covering long spans due to rational use of structural materials. Prestressing of a suspension structure allows minimizing cinematic displacements. The prestressed suspension structure with the main span equal to 200 m was considered as an object of investigation. Replacement of a single steel main cable of the prestressed suspension structure by the hybrid composite cable with CFRP (Carbon Fibre Reinforced Polymer) middle layer and external steel layers with cross-section variable by the cable length considerably decreases dead weight of the cable. Hybrid composite cable ensures functioning of the structure in case of destruction of the middle CFRP layer. The considered prestressed suspension structure was investigated by the FEM software ANSYS. Rational steel distribution by the cable length was determined by optimization. Behaviour of the hybrid composite main cable in the case of destruction of the middle CFRP layer was experimentally tested using the physical model. The dynamic coefficient was obtained.
Keywords: |
experimental model, dynamic coefficient, cable truss, CFRP
|
Full Text: |
References
Chen, W. F.; Lui, E. M., 2005. Handbook of structural engineering. New York: CRC Press. 625 p. Available at: http://dx.doi.org/10.1201/9781420039931
Eurocode 1: Actions on structures. Part 2: Traffic loads on bridges. Brussels, 2004. 162 p.
Goremikins, V., 2013. Rational Large Span Prestressed Cable Structure. Doctoral Thesis. Riga: RTU. 155 p.
Goremikins, V.; Rocens, K.; Serdjuks, D.; Sliseris, J., 2013a. Simplified Method of Determination of Natural-Vibration Frequencies of Prestressed Suspension Bridge. Procedia Engineering, 57, pp. 343-352. Available at: http://dx.doi.org/10.1016/j.proeng.2013.04.046
Goremikins, V.; Rocens, K.; Serdjuks, D., 2013b. Topology Optimization of Cable Truss Web for Prestressed Suspension Bridge. World Academy of Science, Engineering and Technology, 73, pp. 41–47.
Goremikins, V.; Rocens, K.; Serdjuks, D., 2012a. Decreasing Displacements of Prestressed Suspension Bridge. Journal of Civil Engineering and Management, 18(6), pp. 858-866. Available at: http://dx.doi.org/10.3846/13923730.2012.720936
Goremikins, V.; Rocens, K.; Serdjuks, D., 2012b. Decreasing of Displacements of Prestressed Cable Truss. World Academy of Science, Engineering and Technology, 63, pp. 554–562.
Goremikins, V.; Rocens, K.; Serdjuks D., 2012c. Cable Truss Analyses for Suspension Bridge. In Proc. of 10th International Scientific Conference “Engineering for Rural Development”, 24-25 May, 2012, Jelgava, Latvia, 11, pp. 228–233.
Goremikins, V.; Rocens, K.; Serdjuks, D., 2012d. Analysis of Hybrid Composite Cable for Prestressed Suspension Bridge, In Proc. of the 17th International Conference „Mechanics of Composite Materials”, 28 May–1 June, 2012, Riga, Latvia, pp. 93.
Goremikins, V.; Rocens, K.; Serdjuks, D., 2011. Rational Structure of Cable Truss. World Academy of Science, Engineering and Technology, 76, pp. 571-578.
Goremikins, V.; Rocens, K.; Serdjuks, D., 2010a. Rational Large Span Structure of Composite Pultrusion Trussed Beam. Scientific Journal of RTU. Construction Science, 11, pp. 26–31.
Goremikins, V.; Rocens, K.; Serdjuks, D., 2010b. Rational Structure of Composite trussed beam, In Proc. of the 16th international conference „Mechanics of Composite Materials”, 24–28 May, 2010, Riga, Latvia, pp. 75.
Grigorjeva, T.; Juozapaitis, A.; Kamaitis Z., 2010. Static analyses and simplified design of suspension bridges having various rigity of cables. Journal of Civil Engineering and Management, 16(3), pp. 363-371. Available at: http://dx.doi.org/10.3846/jcem.2010.41
Juozapaitis, A.; Idnurm, S.; Kaklauskas, G.; Idnurm, J.; Gribniak, V., 2010. Non-linear analysis of suspension bridges with flexible and rigid cables. Journal of Civil Engineering and Management, 16(1), pp. 149-154. Available at: http://dx.doi.org/10.3846/jcem.2010.14
Juozapaitis, A.; Norkus, A., 2004. Displacement analysis of asymmetrically loaded cable. Journal of Civil Engineering and Management, 10(4), pp.277-284. Available at: http://dx.doi.org/10.1080/13923730.2004.9636320
Kachurin, V.; Bragin, A.; Erunov, B., 1971. Proektirovanie visjachih i vantovyh mostov. Moskva: Transport. 280 p.
Kirsanov, M., 1973. Visjachie sistemy povyshennoj zhestkosti. Moskva: Strojizdat. 116 p.
LVS EN 10025-2: 2005. Hot rolled products of structural steels - Part 2: Technical delivery conditions for non-alloy structural steels.
Peris, N. A., 2011. Steel Beams Strengthened with Ultra High Modulus CFRP Laminates. Doctoral Dissertation. Kentucky: University of Kentucky. 307 p.
Schierle, G. G., 2012. Structure and Design. San Diego: Cognella. 624 p.
Serdjuks, D.; Rocens, K.; Pakrastins, L., 2008. Hybrid Composite Cable with an Increased Specific Strength for Tensioned Structures. The Baltic Journal of Road and Bridge Engineering, 3(3), pp.129-136. Available at: http://dx.doi.org/10.3846/1822-427X.2008.3.129-136
Serdjuks, D.; Rocens, K., 2004. Decrease the Displacements of a Composite Saddle-Shaped Cable Roof. Mechanics of Composite Materials, 40(5), pp.675-684. Available at: http://dx.doi.org/10.1023/B:MOCM.0000047234.72813.2e
Serdjuks, D.; Rocens, K., 2003. Hybrid composite cable based on steel and carbon. Materials Science, 9(1), pp. 27–30.
Sliseris, J.; Frolovs, G.; Rocens, K.; Goremikins, V., 2013. Optimal Design of GFRP-Plywood Variable Stiffness Plate, Procedia Engineering, 57, pp.1060–1069. Available at: http://dx.doi.org/10.1016/j.proeng.2013.04.134
Sliseris, J.; Rocens, K., 2010. Curvature Analysis for Composite with Orthogonal, Asymmetrical Multi-Layer Structure. Journal of Civil Engineering and Management 16(2), pp. 242-248. Available at: http://dx.doi.org/10.3846/jcem.2010.28
Walther, R.; Houriet, B.; Isler, W.; Moia, P.; Klein, J.F., 1999. Cable Stayed Bridges. Second edition. London: Thomas Telford. 236 p.
DOI: 10.7250/iscconstrs.2014.08
Refbacks
- There are currently no refbacks.