
Technologies of Computer Control

2014 / 15 __

42

Topological Modeling Based Diagnostic Tests

Selection

Matiss Erins, Riga Technical University

Abstract―This article covers the process of software testing.

Test management and creation methods are described within the

scope of the research. The process of test selection through

several stages of project development is discussed and practical

examples of appliance are given for the test organization and

decision making with the help of topological models of software.

The criteria of test ranging are described within scope of each of

the testing levels. The paper indicates the use of topological

structural models in software test creation, and planning.

Keywords―Decision making, software testing, topology.

I. INTRODUCTION

Effective quality assurance systems are the key to a

successful manufacturing. Unacceptable product quality leads

to rapid decrease of market demand [1] as it has critical role in

fields like medicine transportation, energy, nuclear

engineering, where the systems must correspond to the highest

standards of quality. Product testing is the basic function of

quality support. Software testing is inspection with the

objective to collect information about the quality of product

under the test.

This research is directed to the software testing phase and

more precisely to the selection and ranging of pre–made tests.

There are many methods of manual and automated creation of

tests [2], [3] discussed in the literature.

This work describes and categorizes the process of test task

organization and proposes methods for test selection to

systematically choose corresponding subsets of the whole test

set. The process of selection is based on software topology and

evaluation criteria. The main objective is to use the structural

graphs and topological characteristics for test evaluation.

In every phase of software development there is a number

of artefacts acquired for the evaluation of next phase [4].

Testing takes different forms depending on software

development methodologies [5]. There are various structural

control measures like design, quality, test and data measures

[6]. The defects discovered during the testing can be traced

using methodologies described in [7] and [8].

II. USAGE OF TOPOLOGICAL MODEL IN TEST CREATION

The tests are generated for a sample program called

“Triangle problem” – the algorithm that uses numerical input

values for triangle sides and determines the type of triangle.

The algorithm is widely used as an example and therefore is

extended by additional functionality for test analysis and

generation. A full test creation process is described in [9], not

all of it used in this research. The topological structural model

of triangle program is shown in Fig. 1. The 4 graphs are paths

of program flow generated using base path analyses method

(McCabe, 1982). Each of the paths describe program path with

a different result. Other paths are compared with four base

paths for functional redundancy analysis in order to reduce the

total test set.

Fig. 1. Program flow topology represented with four base paths.

III. PROPOSED TEST SELECTION PROCESS

DURING THE TESTING

The decision making for test selection is split in four levels

matching to the stages of software development. At first, for

the purpose of component testing, used stages and decision

making schemes are taken into consideration. These are

followed by the integration stage or inter-component

cooperation tests. When all components are developed, it is

possible to accomplish system tests and then to do usability

testing.

A. Component Tests

Computer system consists of basic building blocks –

modules. Modules are created based on structural models,

which can be created based on every module algorithm. As the

model is the smallest unit t in the described stages, it can also

be viewed as a single function or multiple functions depending

on the complexity. The algorithm of a module can be split into

sub–modules which can be combined for view–ability. By

assuming that each module is assigned to a single

functionality, modules can be named by functional meaning

[10]. It is the assumption that those tests to which this module

is assigned, belong to the same component. In this level the

doi: 10.7250/tcc.2014.006

Technologies of Computer Control

 __ 2014 / 15

43

TABLE I
INITIAL COMPONENT TESTS AFTER CREATION

Test
Number

Structural
coverage

Method of
test creation

Input
values

Expected result Actual result of last
execution

Last execution date (T_ped) Last execution time (t_izp)

1 0.25 Decision path a = 3

b = 4

c = 5

Arbitrary OK 12.12.2013 00:00:13

2 0.25 Border value

analysis

a = 3

b = 3

c = 2

Isosceles NOK 12.12.2013 00:00:12

3 0.25 Equivalence

partitioning

a = 3

b = 3

c = 3

Equilateral NOK 12.12.2013 00:00:12

4 0.25 Worst case a = 3

b = 3

c = 0

Not a triangle OK 12.12.2013 00:00:13

software structural graph is used in order to assess the test

coverage criteria. Graph structure is useful in analysis in the

reflection of logical flow, order of passing the inter-

component control and change of variable values. Structural

topological model at component level is the base for creation

of software tests, based on which higher level tests can be

performed.

When the initial set of tests is created, every generated test

of the set has determined values of:

 Structural coverage of test, kp;

 Affiliation name of the component;

 Time of the test creation.

Initial tests created for the triangle problem can be seen in

Table I.

The purpose for execution of tests in this level is quality

assessment and reduction of test redundancy – providing

structural coverage and detection of potential faults. The

decision making is based on the coverage of structural graph,

weighted particular redundancy measure NR.

Functional test redundancy is detected by comparing the

purpose of each test. If the values match, the tests are

redundant. Structural test redundancy is compared by the path

which this test takes in the program graph. If the same path is

executed repeatedly, the possibility for redundancy is higher.

The correctness of each test step depends on precise values of

function weight rating and of the precise definition of

functions description. Before initial test execution there is no

dynamical statistics of the test. The evaluation is possible by

using the tested componential coverage criterion kk.p for each

test. This criterion is described by (1), where Ci is the chosen

coverage method and NR is test redundancy measure [10]:

 𝑘𝑘.𝑝 = 𝐶𝑖 𝑁𝑅 (1)

The tests are ranged by structural coverage criterion kk.p. The

whole test set needs to be executed to reach the structural

coverage t strukt to be as close as 100 %. If all of the paths are

not reachable, then kvazi–optimal structural coverage is below

this value.

After the ranging, tests are added to the executable test set.

The test set is assigned the total structural coverage value Ck

by cyclic addition of set results shown in (2), where Ci is

coverage of the current test:

 𝐶𝑘 = 𝐶𝑘 + 𝐶 (2)

Test addition to the set is continued until the condition of

sufficient percentage condition is reached (3), where Nstrukt is

number of elements chosen by the criterion:

𝜏
𝑠𝑡𝑟𝑢𝑘𝑡 ≥

𝐶𝑘
𝑁𝑠𝑡𝑟𝑢𝑘𝑡

∗100 (3)

After the execution of the second phase the following test

dynamic criteria are acquired (3), where :

 Test execution time tizp;

 Last test execution date Tped;

 Test failure statistics (test passed or not).

After the execution of tests it is possible to evaluate the test

fail statistics for the component under the test. The failed tests

are then analyzed and rated by importance and priority

(Table II).

TABLE II

TEST SET AFTER EXECUTION

Test
Number

Structural
coverage, kp

Method of
test creation

Input values Expected
result

1. 0.25 Decision
path

a = 3

b = 4

c = 5

Arbitrary

2. 0.25 Border value

analysis

a = 3

b = 3

c = 2

Isosceles

3. 0.25 Equivalence

partitioning

a = 3

b = 3

c = 3

Equilateral

4. 0.25 Worst case a = 3

b = 3

c = 0

Not a

triangle

Technologies of Computer Control

2014 / 15 __

44

The aim of the repeated testing is to test if the failures

reported previously have been fixed. Decision is made based

on the composite value for the set of dynamic criteria.

Repeated testing executes the tests that were marked as

“NOK” in previous executions. Decision is made based on the

following parameters (4):

 𝑘𝑑𝑒𝑓 = 𝜔𝑠𝑘p, (4)

where

𝜔𝑠 defect weighted severity ;

kp defect priority.

The tests are ranged by the dynamic criterion. After several

cyclic re–testings the last result is accepted. Test management

tools like Testia Tarantula can store up to 3 last execution

results for each test. The repeated testing set contains only the

tests with the last failed execution.

B. Integration Tests

Integration testing is the phase when separate modules of

software are tested in groups. It is done before the system

tests. Integration tests consist of unit tests with already

valuated criteria, which are valued at the component testing

phase. Integration tests are added by specified integration test

plan. Unit tests are combined and added or assigned to these

integration tests.

Components are nodes of component relation graph.

Relational graph can then be condensed to a single node of

integration graph. Edges between the nodes of the integration

graph connect the output of the structural node to the input of

the continued structure in structural level. When the number of

graph nodes reach 100 it is suggested by structural modelling

to use graph condensation. In case of the systemic structural

graph the cyclic structure is too complex, the structure is

scaled [11]. The order of setting the test steps in integration

tests follows by the component relations in oriented graph.

Statement: the edge created between nodes does not have a

role of input or output signal or exposure. It points out that

there exists cause and effect relation between these nodes and

reflects binary relations in the set of functional properties. [11]

Fig. 2. Program graph splitting components.

Program decision graph (Fig. 2) is separated for testing into

components which are developed and gradually integrated to

real project. The following approach facilitates project

development and creation of tests. Parts of a graph with the

same assigned functionality are grouped under the same

functional node, but edges in Fig. 2, like {A5, B1} and {B5,

C1} are turned into edges of the integration graph {A, B} and

{B, C} (Fig. 3). For oriented graph the successor set of a node

consists of nodes to which this is the input edge. For the same

node the predecessor set is formed by nodes to which this

node is outgoing edge apex.

Fig. 3. Functional condensation graph of a structural model.

Integration phase input conditions:

 Project code has passed component testing phase;

 Product satisfies the requirements of performance and

memory detailed in functional test specification;

 Software has passed tests for basic evaluation of failures;

 All component level high priority issues are fixed;

 Documentation is updated to correspond to the current

status of the project.

There are following strategies in integration phase

discussed within the scope of this research – top-down and

bottom–up integration.

With the top-down approach the main module of software is

tested at first, for other modules there are specific drivers

created. Then planwise the drivers are replaced with actual

component with drivers (Fig. 4). This is done until there are no

other modules called. It is important for the first test modules

which use interfaces, I/O operations and modules which have

the highest failure rate [12].

Fig. 4. Top-down testing.

The benefits of the top–down approach are: 1) Reduced

time for system tests; 2) Highest level interfaces are tested

first while testing also the lowest levels. During these tests

most failures are localized in the last recently added modules.

The disadvantages of the method are: 1) Need to create

specific drivers; 2) It is relatively hard to find test data for new

modules. The testing data flow is also including non–oriented

graph and the testing of interface is costly.

Technologies of Computer Control

 __ 2014 / 15

45

The bottom–up testing approach takes a module which does

not call other modules. At first this module passes the

component testing phase and the testing is concluded for the

modules calling already the tested ones i.e. interface between

subsystems. Tests can be executed for multiple groups in

parallel (Fig. 5). Simple test data can be created for smaller

modules, but the problem lies in the complexity of input or

overall environment simulation. In the case of many modules,

large number of subsystems will be tested at the same time.

Fig. 5. Bottom–up testing.

To calculate the number of integration tests for the

component (5) is used, where V is the cyclomatic complexity:

 𝑉 = ∑ 𝑣𝑖
𝑁
𝑖−1 (5)

The total number of integration tests for the 3 components

used in tests is the sum of tests for each component in the test

set (6).

 𝑉 = (𝐴) + (𝐵) + (𝐶) (6)

The weight is each step distance in graph. The criterion is the

sum of sub-graph coverage or the sum of the component

coverage. All pair paths are a subset of paths that are

combined from sub path nodes. Sub path and sub path set is

characterized by the relation of many-to-one. If sub path

includes a loop, the sub path associated with the set does not

affect the change in the number of loop iterations. The set of

pair path is the set of edges that includes pair paths. For each x

in test T the set of exercised paths includes all pair path sets

that are defined for all reachable users. If a path involves

loops, all path testing requires two test tasks, the first does not

involve passing loop elements, the second executes the loop

element for a given number of times.

Phase 1: Test base sets are chosen based on the structural

parameter of each module (Fig. 6).

Fig. 6. Separate test creation for sub–modules B and C.

Phase 2: Test base is created and selected for the edges

connecting the main module A with sub–modules B and C

(Fig. 7).

Fig. 7. Integration of module A with modules B and C.

The complexity of integration S1 is defined for a program

with n number of modules (G1 to Gn) by using equation (7):

 S1 = (SUM iv(Gi)) − n + 1 (7)

The complexity of integration measures the number of

independent integration tests in the scope of full software

design. In the integration level test tasks for separate modules

are combined by insertion into a single test task using the

principle that the last step of the first task is the first step of

the second task, in this way creating the integration level of

test steps from test tasks in component level. The single test

step is defined by the ID – identifier. By looking at the test

creation for the triangle problem (Fig. 8), the program is split

into three components A, B and C. These are modules which

are integrated step–by–step into the solution and the

integration tests are made.

Fig. 8. Integration level graph.

For the execution of the first integration stage there is a test

which contains merged A and B components (Table III) as

well as the Test 2 for the second integration.

Technologies of Computer Control

2014 / 15 __

46

TABLE III

INTEGRATION LEVEL TEST EXAMPLES

Integration test 1

Step ID Component Action Result

1 A Input
c = 2

a = 3, b = 3, Data acceptable

2 B Input
c = 2

a = 3, b = 3, Isosceles

Integration test 2

Step ID Component Action Result

1 A Input
c = 2

a = 3, b = 3, Data acceptable

2 B Calculate
c = 2

a = 3, b = 3, Isosceles

3 C Triangle type and sides

a = 3, b = 3, c = 2.

Image of

isosceles triangle

The execution of integration level tests requires evaluation

of structural coverage for each test. The distance between the

two components is the length of path or the number of edges

in the integration graph. The weight for this criterion watt is

expressed in (8):

 𝑤𝑎𝑡𝑡 =
1

𝑑
 . (8)

The coverage measure of test step integration is calculated

using the weighted component distance measure. The weight

indicates (9), the order of components compared:

 𝑘𝑖.p = 𝑤𝑎𝑡𝑡 𝑘𝑘.𝑝 . (9)

The total functional test value for integration level is the

weighted sum of individual steps (10). The value is weighted

by the rate of the step included in the set:

 𝑤𝑏 =
𝑁𝐼𝐷

𝑁𝑆𝐼𝐷
∗100 . (10)

 The equation for kt integration test value (10):

 𝑘𝑡 = ∑ 𝑘𝑖.𝑝𝑤𝑏
𝑁𝑠
𝑁=0 . (11)

The tests are put based on test severity criterion kt in

descending order by ranking higher tests with a higher value

of kt. (Table IV).

TABLE IV

TEST OVERVIEW

The exit conditions for the integration phase are as follows:

 Component setup tests are done;

 All priority defects are fixed and closed;

 Earlier documentation is updated to match the current

condition.

C. System Tests

During the system testing the behavior of system or product

is tested against the expected behavior stated in the

documentation. It is possible to include tests based on risk or

requirements specification, business processes, use cases or

other high level description of system functions and

interaction with operating system or system resources. System

testing is chosen as the last phase to gain confidence that the

object under the test corresponds to the specification. System

testing is held by test specialists of independent testers. System

testing is intended to check both the functional and the

structural requirements by focusing on the functional side [13].

System tests are formed from integration phase tests and

component tests by using the requirement traceability matrix.

Requirement traceability matrix is a document with the

many-to-many correlation of two documents (Table V). This

approach is used for the system test creation, by adding user

requirements to tests and the evaluation of quantity percentage

kreq.

TABLE V

EXAMPLE OF TRACEABILITY MATRIX

Test
task

Requirements P1 P2 P3 kreq

Total 2 2 1

T1 2 X X 40 %

T2 2 X X 40 %

T3 1 X 20 %

Table V consists of three tests and 3 requirements bound

together. Each test has the percentage evaluation of

requirements covered by the test and a number of tests that

cover the requirement. System tests are executed in a similar

way to integration tests where the criterion of requirement

coverage kreq is used as a measure.

 Rating = Structural coverage + requirements coverage

The value of requirement coverage is calculated by the ease

of selected system test. System tests are given values of

selected weight wreq, which depends on the volume of the

selected test set. This paper describes 3 test set volumes – a

 Integration test 1

Step

ID

Component 𝑤𝑎𝑡𝑡 kk.p 𝑘𝑖.𝑝 𝑤𝑏 𝑘𝑡

1 A 1 0.141 0.141 0.165 0.0235

2 B 1 0.25 0.25 0.02

 Integration test 2

Step

ID

Component 𝑤𝑎𝑡𝑡 kk.p 𝑘𝑖.𝑝 𝑤𝑏 𝑘𝑡

1 A 0.5 0.141 0.07 0.16 0.0335

2 B 1 0.25 0.25 0.02

3 C 1 0.4 0.4 0.025

Technologies of Computer Control

 __ 2014 / 15

47

small volume test called “smoke test”, a requirement volume

and a full test set.

The small test set idea is to check the normal function of the

main system components. If these tests are repeated, it is

possible to assign tests with higher severity for a repeated

testing in order to check for last changes and they are

characterized by the highest fault possibility. The purpose of

the easy test set is to call each main function of the system by

taking into account the time constraints.

The requirement tests depend on the requirement coverage.

Requirement coverage of 100 % means that the set tests all

requirements are assigned. Requirements can be visualized in

program integration graph by adding requirement description

for each component. Fig. 8 contains the component nodes

created in lower level tests with attached requirement

description with the chosen level of detail, which are then

associated with tests.

Fig. 9. Component level graph with added requirements.

Before system activation or launching into production

environment a full system test is executed. In the case of the

full test set tests are organized by the test coverage structural

criterion combined with the dynamic criterion of test

execution time. The time constraint is regulated by sorting

tests in ascending order, where first executed are the tests with

shorter average duration and higher structural coverage having

the longest execution period. The exit criteria for the system

tests are:

 Requirement coverage for tests has reached a set value;

 All defects with high or average severity are fixed;

 Software is tested to work with all supported devices,

system configurations and other products [14].

D. Usability Tests

When the tested system is passed to the real user or client

usability tests are made. The purpose of testing of the

application is to make sure that the feature or use case is

included in the system and used the proper way. The test

selection is similar to the integration stage, except that the

tests are made by focusing on user stories not on actual

components [15].

Usability tests are executed when it is possible to measure

the ability for a system or a subsystem to respond to the

requirement specification usually after the implementation of

larger project parts or system versions. During this phase, new

tests are generated based on sequential diagrams. Also there

are automated tools for test generation [16] using principle of

usage cases. This paper is focused on the tests created during

previous phases and on the customization of tests in usage

level. Entry criteria for usability phase are as follows:

 Usability test plan is confirmed;

 All high priority system level issues are solved and

defects fixed;

 Software is capable of working on all supported devices

and platforms [17].

Usability level tests consist of user steps – sequential

actions which must be executed using the software under the

test. These tests check possible user roles and access to the

role-specific systemic functions. Usability tests can be done in

the field of security testing by means of checking boundaries

set in software. Structural topological models of system can be

applied for usability test creation when component tests are

combined and the steps of usability tests are then matched

with the nodes of integration graph the decision making during

this phase is based on system level requirements. Usage

coverage criterion is used for test ranging. Output criteria for

the usability testing stage are:

 Usability tests should reach the threshold of usability

coverage (i.e. 80 % of tests done);

 All defects of usage marked as “high priority” should be

tested and fixed.

IV. RESULTS

Organizational methods and structural approach to the test

selection is the basic instrument for automated test selection

and creation and execution. The test management software

structure was discussed with possible solutions to access and

acquire test data form data base without affecting the test

management structure. Theoretical approach of test organization

with given practical examples is given in this paper. Tests can

be organized on different levels matching the stages of project

development. Independent test analysis can be held in any of

the four stages described and the results are used for higher

level test organization. Sorting criteria are defined for use in

each of the levels. The objective of the research is the creation

of automatic test selection tool and shared database for tests.

The possible solution is shown in Fig. 9. The test tool

integration is intended to have a user level access to the tests

stored by the test management tool. The proposed test

processing module is based on the decision making and test

selection block that uses methods described in this work. As

the testing environment of “Testia Tarantula” management

tool supports agile software development methodology as well

as the methods for current purpose support step wise

integration, the planned solution would be used in this project.

Fig. 10. Test packet selection tool integration.

Technologies of Computer Control

2014 / 15 __

48

The test management tool “Testia tarantula” is an open-

source project which supports bug tracking features and other

software tools like “Jira” and “Atlassian” [18]. This solution

supports agile software development methodology with multi-

user support. The structure of the test data base can be

accessed by any “MySQL” database manager. The

management solution is built on Ruby programming language.

The concept of the automated test selection tool is to

display the test set using the structural graph of software

which can be scaled by the selected stage of the development

to facilitate the selection of test set. The output data for the

proposed module consist of a ranged test set that is updated

before the test execution. The implementation of the described

methods into an automated tool minimizes the manual test

redundancy and improves efficiency of the regression test set,

requiring more detailed research and usage statistics. The

solution can be used for small to medium scale projects where

the structure of a single component or systemic component

does not exceed 100 to 1000 units. Larger scale projects would

require separation of low level components. Decision paths

can be modelled by using structural models created in test

selection. Structural and functional models are used to

graphically analyze software structure and to evaluate the

impact of the selected test set. Usage of structural graphs in

functional testing can indicate the functional redundancy.

REFERENCES

[1] American Society for Quality, Glossary for word “Quality”, [Online].

Available: http://asq.org/glossary/q.html [Accessed Nov. 6, 2014].

[2] R. Nilsson, “Automated Selective Test Case Generation Methods for
Real-Time Systems,” M.Sc. thesis, Comp. Sci., Univ. of Skovde, 2000.

[Online]. Available: http://www.diva-portal.org/smash/get/diva2:2866/

FULLTEXT02 [Accessed Nov. 6, 2014].
[3] J. Rushby, “Automated Test Generation and Verified Software,” SRI

International, [Online]. Available: http://vstte.inf.ethz.ch/Files/rushby.pdf

[Accessed Nov. 6, 2014].
[4] ISTQB Foundation, Software Development Life Cycle phases.

[Online]. Available: http://istqbexamcertification.com/what-are-the-

softwaredevelopment- life-cycle-phases/ [Accessed Nov. 6, 2014].
[5] C. Larman. Agile and Iterative Development: A Manager's Guide,

Addison-Wesley, 1st ed., ISBN 9780131111554, pp. 9–17.

[6] S. H. Kan, “Software Quality Metrics Overview,” in Metrics and

Models in Software Quality Engineering, 2nd ed. ch. 4. pp. 85–120.

[Online]. Available: http://www.pearsonhighered.com/assets/hip/us/hip_us
_pearsonhighered/samplechapter/0201729156.pdf [Accessed Nov. 6, 2014].

[7] ISTQB, “Certified Tester Advanced Level Syllabus: Test Analyst,”

p. 64, 2012. [Online]. Available: http://www.istqb.org/downloads/
finish/46/95.html [Accessed Nov. 6, 2014].

[8] H. Stone, Software Metrics Proposal, 1998. [Online]. Available:

http://softwaretestingservice.com/SoftwareMetricsProposal.pdf
[Accessed Nov. 6, 2014].

[9] R. S. Pressman. Software engineering: a practitioner’s approach, 4th

ed., McGraw-Hill, Inc. 1997, pp. 852.
[10] Agile alliance. Unit testing. [Online]. Available:

http://guide.agilealliance.org/guide/unittest.html [Accessed Nov. 6, 2014].

[11] J. Osis, J. Grundspeņķis, Z. Markovičs, Topological Modeling of
Complex Heterogeneous Systems: Theory and Applications. Rīga: RTU,

2012. 407 p. ISBN 9789934507014.

[12] S. Anderson, School of Informatics. Integration Testing [Online].
Available: http://www.inf.ed.ac.uk/teaching/courses/st/2011-12/Resource-

folder/10_integration.pdf [Accessed Nov. 6, 2014].

[13] ISTQB, “Certification – What is system testing?” [Online]. Available:
http://istqbexamcertification.com/what-is-systemtesting/ [Accessed May 19,

2014].

[14] R. Vivek, Entry and Exit Criteria for Different Stages of Testing.
[Online]. Available: http://vivekranjan1980.wordpress.com/2010/03/23/

entry-and-exit-criteria-for-different-stages-of-testing/ [Accessed May 19,
2014].

[15] L. Luo, “Software testing techniques. Technology Maturation and

Research Strategy,” [Online]. Available: http://www.allbookez.com/
pdf/14d8it/ [Accessed May 19, 2014].

[16] S. Kariyuki, H. Washizaki, et. al., “Acceptance Testing based on

Relationships among Use Cases,” 5th World Congress for Software
Quality, p. 25, 2011. [Online]. Available: http://www.juse.or.jp/

software/390/attachs/paper04.pdf [Accessed Nov. 6, 2014].

[17] ISTQB, “Advanced Level Syllabus. Test Analyst,” p. 64, 2012. [Online].
Available: http://www.istqb.org/downloads/finish/46/95.html [Accessed

Nov. 6, 2014].

[18] Tarantula. (2014) Test management tool “Testia Tarantula” manual.
[Online]. Available: http://www.testiatarantula.com/ [Accessed Nov. 6,

2014].

Matiss Erins received the degree of B. sc. ing. in 2012 and the degree of

Mg. sc. ing. in 2014 from Riga Technical University.
He is a PhD student with the Faculty of Computer Science and Information

Technology, Riga Technical University.

His research interests are: mobile software development, embedded hardware
and robot control systems.

E-mail: matisserins@rtu.lv

Matīss Eriņš. Topoloģiskajā modelēšanā balstīta diagnostisko testu izvēle

Pētījumā sīkāk apskatīta testu uzdevumu pārvaldība un testu uzdevumu veidošanas metodes. Teorētiskie pamati satur informāciju par programmatūras izstrādes

procesu kopumā – izstrādes posmi un metodoloģija, tāpat detalizēti apskatīts testēšanas process un tā iekļaušana izstrādes dzīves ciklā. Darbā apkopoti
programmatūras izstrādes procesā izmantojamie kritēriji. Pētījumā analizēta diagnostisko testu atlases lēmumu pieņemšanas gaita dažādos programmatūras

integrācijas līmeņos, kā arī apskatīta grafu modeļu izmantošana testu izveidē un plānošanā. Apskatītas iespējas ar grafu īpašību palīdzību samazināt testu

atkārtošanos un noteikt testu atlases kritērijus atšķirīgiem testēšanas veidiem. Darba aktualitāte tiek pievērsta šobrīd programmatūras izstrādē aktuālajai spējās
izstrādes metodoloģijai un testu procesa iekļaušanai tajā. Darba mērķis ir apskatīt testu uzdevumu organizēšanu un veikt testu apakškopas atlasi, izmantojot

uzdotos kritērijus un atlases metodes, balstoties uz programmatūras topoloģiju. Citiem vārdiem sakot, izpētīt iespējas strukturālo grafu īpašību izmantošanai testu

izveidē un testu kopas izlases novērtējumu iegūšanā. Darbā tiek aplūkoti esošu testu uzdevumu pārvaldības rīki, veidojot to salīdzinājumu. Uzmanība pievērsta
bezmaksas rīkam “Testia Tarantula” manuālai testēšanai.

Матисс Ериньш. Выбор диагностических тестов на основе топологического моделирования.

В исследовании детально рассмотрены методы управления тестовыми заданиями и формирования тестовых заданий. Теоретическая основа работы

содержит информацию о процессе разработки программ в целом – этапы и разнообразие методологии, а также детально рассмотрен процесс

тестирования и включения ее в жизненный цикл разработки. В работе представлены критерии программы, используемой в процессе разработки . В
исследовании проанализирован отбор диагностических тестов в ходе принятия решений на различных уровнях программной интеграции, а также

рассмотрено использование графической модели в создании и планировании теста. Обсуждаются варианты уменьшения числа повторений испытаний

и тестов с помощью свойств графа, чтобы определить критерии отбора тестов для различных видов тестирования. В рамках работы исследована
функциональная возможность дополнения и структурного анализа теста управленческой среды «Tarantula» для создания дополнительного

инструмента выбора тестов на основе результатов исследования.

http://asq.org/glossary/q.html
http://softwaretestingservice.com/SoftwareMetricsProposal.pdf
http://istqbexamcertification.com/what-is-systemtesting/
http://www.istqb.org/downloads/finish/46/95.html
http://www.testiatarantula.com/

