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Abstract. In order to successfully use stone wool products as a construction material which is affected by long-term 
compressive loads, it is not enough to be aware of the strength and deformation characteristics determined under short-
term loads. It is important to know the change in time of deformations (creep deformations) of the products under 
constant long-term compressive loads, which cause the enlarged deformations of structural elements of the material.  
The analysis of the change in thickness of stone wool under constant short-term and long-term  %1060.025.0  c  

loads is presented, predicted values of creep deformations are determined and combined using synthesis procedure, 
impact factors for joint prediction results and weighted mean values of joint prediction results are determined. For the 
prediction of consistent pattern of creep deformations for the period of 10 years the relative creep deformations at the 
time t  were used. These relative deformations under constant compressive stress c were recalculated to single stress. It 

has been proposed to evaluate predicted creep deformations of stone wool slabs for any of the constant compressive 
stress %1035.025.0  c , representing the time period up to 10 years, on the basis of values of creep mobility. 
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Introduction  

Stone wool layers, which insulate multi-layered 
partitions, in most cases are affected by long-term 
compressive stress (Horwath 1997), consequently,  
the prediction of their creep deformations is very 
important from both scientific and practical point of view 
(Horvarth 1997, 1998; Gnip et al. 2012b, 2013).  
The most reliable data on these deformations may be 
obtained from long-term experiments. However, such 
data practically cannot be found in literature, because 
these experiments are complex and long-term,  
it is important to carry out short-term tests and 
extrapolate obtained results for a longer time (Žiliukas 
2004; Gnip et al.2007, 2009). Moreover, if in the case of 
expanded polystyrene products their mechanical 
properties with the confidence level of 90-95% may be 
related with their density (Gnip et al.2005, 2007, 2012b; 
Vaitkus 2007; Mihlaynlar et al. 2008), in the case of 
stone wool products such data cannot be easily 
systemized due to anisotropic structure, especially when 
it is crimped (Bergonnier et al. 2005; Karamanos 
2007;Gnip et al. 2009) because compressive and other 
loads are received by unevenly distributed inter fibre 
contacts (Gnip et al. 2012b). Mechanical behaviour of 
stone wool products under long-term loads is 
significantly different from the behaviour of the material 
under short-term loads (Merkel 2002). Consequently, it is 
very important to know how deformations (creep 
deformations) of stone wool products develop over time, 
i.e. how they deform over time under  the same constant 
long-term loads (under fixed stress) which influence the 
enlarged deformability of structural elements of the 
material (Leal et al. 2009; Gnip et al. 2012b). 

Creep process is usually approximated by the 
calculation model numerical parameters of which are 
based on time-limited test results and the assumption that 
the chosen deformation mechanism applies outside  

the direct experiment limits (Žiliukas 2004; Gnip  
et al. 2012b). 

In the European countries, mineral wool insulation 
creep tests under compressive load are governed by 
normative documents (EN 1606:2013; EN 13162:2012). 
Based on these normative documents creep deformations 
of thermal insulation materials do not exceed 2%.  
In order to limit deformations of thermal insulating 
materials to 2%, it is important to (Merkel 2002; Gnip et 
al. 2012a) maintain the initial stage of creep deformations 
by introducing safety factor (coefficient) and ensure the 
long-term thermal insulation characteristics throughout its 
operation (protect from moisture, high temperatures, 
etc.).  

The aim of the work is to experimentally determine the 
indicators of stone wool products under short-term and 
long-term loads and on their basis to evaluate predicted 
values of creep deformations for the period of 10 years.   

Materials and test methods 

Before the long-term creep tests in accordance with 
EN 826, the strength and deformation characteristics of 
stone wool slabs under short-term compressive load have 
been determined. For the purpose of evaluation of 
statistical results in each series of tests a group of 
specimens possibly close with regard to their 
characteristics have been tested. Long-term compression 
tests have been performed on fourteenth series of such 
specimens. The results of statistical processing of the data 
are presented in Table 1. Long-term creep test modes 
have been chosen using strength and initial modulus of 
elasticity values (Table 1) of stone wool specimens under 
compression.  

The overall deformation of specimens under constant 
load has been given by the equation: 
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From equation (1) the part of creep deformations is 
expressed as: 

)(
0 )(  b

ct tmXXtX  , (2) 

where: X0 – initial deformation after 60 s; 
Xct – creep deformation after the time t ; 
m, b – parameters of the material (FINDLEY 

parameters). 
Deformations that develop in stone wool specimens 

under constant compressive load consist of relatively 
instantaneous deformation ε0 occurring immediately after 
the addition of the load, and later developing deformation 
εc(t): 

   .0 tt c   (3) 
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X(t) – thickness reduction of stone wool specimens, 

mm, at fixed time t; sd – mean value of thicknesses 
(heights) of tested specimens with initial load of 250 Pa, 
mm, (it 5 specimens at each stress level were tested). 

Phenomenological function F[εc(t)] description is 
based on two assumptions. One of them,- is that the  
creep rate decreases at a gradual, "very agile'' carrier 
amount reduction of elementary deformations and 
gradually ’’slower’’ their intigration into the process of 
deformation. In this case, creep εc(t) is a well-established 
process and creep deformations can be expressed by 
equations (EN 1606): 

c (t) = b0t
b
1, (6) 

where: c (t) – mean value of creep deformation at the 

moment t, %; b0,b1 – constants depending on the 
characteristics of the material; t – time, hours. 

Another assumption is based on the fact that the creep 
rate decrease over time is caused by the reduction of 
elementary deformation carriers at the constant agility of 
each carrier.   

Creep is the extinguishing process and the relationship 

between creep deformations )(tc  and time t is 

exponential (Gnip et al. 2009): 

c (t) = b0[1-exp(-b1·t
b
2)], (7) 

where: b0 - c value when t → ∞; t – time, days.   

 

Creep deformations test results 

Thirteen sets of specimens were produced from 
partially crimped structure slabs with the density of  
(95-108) kg/m3 and (3.4-6.1) % of binder. One set of 
specimens (No. 11) had vertically layered structure with 
the density of (60-95) kg/m3 and (3.2-4.8)% of binder. 

Fig. 1 presents experimental curves of thickness 
(height) reduction Xc(t) of stone wool specimens under 
long-term compressive load. The values Xc(t) of stone 
wool slabs have been approximated in accordance with 
the equation (2).  

Relative creep deformation εc(t) values were calculated 
according to equations (6) and (7). The corresponding 
mathematical statistical processing of the results is 
presented in Table 1. The Table for each creep test series 
include: 

- information about the selected stone wool specimens 
(density, compressive stress σ10% deformation εc); 

- mean value of thickness of test specimens; 
- values of long-term compressive load as well as 

deformation ε0 occurring at the time of loading, and 
εc(t), which develops until the end of the 
experiment.  

- constant (power law) equation coefficients b0 and b1, 
(exponential) coefficients b0,b1,b2, and accordingly 
mean average standard deviation Sr and coefficients 

of determination 
2

tc
R  ; 

- calculated predicted creep deformations dotted values 
when constant compressive load operates for 4, 8 
and 10 years. 

The statistical analysis of experimental data has shown 
that,- assessing the errors approximation of creep 
deformation using regression equations (6) and (7),- 
equally well describe the results (Fig. 2). Therefore, it is 
not possible to give a preference for one or another of the 
proposed dependencies. However, the empirical 
dependence (6) does not satisfy the creep deformations 
limit conditions, when b1>0, t→∞. 

Dependence (7) sufficiently describes the results and 
satisfies creep deformations and speed development limit 
conditions, when b1>0, t→∞. Creep deformation 

)(tc values as well as mean values of relative creep 

deformations c (t → ∞) = b0 may be calculated 
according to (7) empirical dependence at any time 
including when t→ ∞.  

Predicted values of the relative difference of creep 

deformations c ),%10( T  have been calculated as 
follows: 
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Fig. 1. Kinetics of the change in thickness of stone wool under 
constant long-term compressive load σc=0,25·σ10% (a), 
σc=0,35·σ10% (b) and σc=0,4-0,6·σ10%; the lines indicate the test 
series numbers (other indicators are presented in Table 1). 
Experiments duration: ● - up to 90 days; ○ - more than 
90 days. 
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)1(c (T = 10) ir )2(c (T = 10) - predicted creep 

deformation values for 10 years period calculated in 
accordance with the power law (6) and the exponential 
(7) equations.  

Extrapolating on the basis of exponential equation (7), 
the predicted values of creep deformations for 10 years 
period are on averagel by 16% lower except for the three 

individual deviations )10( tc that reach (28–57)%. It 

should be also noted that the extrapolation method is 
rather crude operation and is based on a series of 
assumptions, consequently, it is assumed that the 
confidence probability is (70-95)% (Gnip et al. 2009). 
Since differences of predicted creep deformation values 
are set by going very far from a direct experimental time 
range, it suggests that prediction results  (Tpower = 10), and 
(Texponential = 10) is not in conflict with each other, they are 
compatible.  
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Fig. 2. Creep deformations growth kinetics of different 
densities stone wool specimens (experimental data) under 
constant fixed compressive load σc=0,25·σ10% (a), σc=0,35·σ10% 
(b) and σc=0,4-0,6·σ10%. Aproximated : (—) - by (6) equation, 
(---) by (7) equation. Experiments duration: ● - up to 90 days; 
○ - more than 90 days. 

Adopting the predicted results consistency condition 
and assessing their reliability, prediction synthesis 
procedure can be realized. Its essence - is as follows: 
predicted values obtained from power law (2) and an 
exponential equation (3) weighted average result 
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determination. The less reliable the individual score, the 
lower is its weighted contribution to the combined 
prediction which should be much more reliable than its 
components (Gnip et al. 2008, 2009; Vaitkus 2007). 

Further, the specific synthesis procedure of predicted 
values is presented. Based on the results obtained from 
equations (6) and (7), and,- their errors characterized by 
mean square deviations are calculated (see Table 1). 

In Fig. 3.- the comparison of predicted dotted 

)(tc (T=10) values calculated from power law (6),  

and exponential (7) equations are presented.  
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Fig. 3. Stone wool slabs under constant compressive load σc 
creep deformations (for 10 years period) predicted values 
reduction calculated according to the exponential equation 
compared with the corresponding values calculated from the 
power law equation, when the compressive stress: ∆ - 0,25 
σ10%;   ▲ - 0,35 σ10%; ○ – 0,40÷0,45 σ10%; ●–0,50÷0,60 σ10%. 

Synthesized joint prediction estimate )( ec t is a linear 

combination of individual predictions: 
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where: 

i - i-th prediction weight; 

)()( iic t - individual i-th prediction values. 

Weights i  selection criterion is the minimum of the 

prediction )( ec t
 errors. Error minimum detection 

procedure is based on Lagrangian solutions (Gnip et al. 
2007). If it is solved, in case of two prediction results,  
we obtain: 

the influence coefficients for joint prediction results: 
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the weighted average of joint prediction results: 
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the dispersion of such average: 
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According to equation (12) obtained joint prediction 
results weighted averages with a standard deviation 
Sr=0.279 kPa, and the coefficient of determination 
R2=0.906% are presented in Fig. 4. Obviously, the 
combined prediction ensures greater reliability of the 
results than its individual components results. 

In this paper, the regression equations (6) and (7) are 

used for evaluation of dependent )( ic t
 variable 

predicted values outside the independent variable 
experimental study ti (time) limits. These regression 
equations are useful for practical prediction 
(extrapolation). If the outgo outside of the experiment is 
small ((ti=10) years), then the error, related to the fact 
that the test limits relation form will change slightly, will 
be small and may be covered with a confidence interval 
(Gnip et al. 2007). 
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Fig. 4. Weighted averages of creep deformations predicted 
values when compressive stress is: ∆ - 0,25 σ10%; ▲ - 0,35 σ10%; 
○ – 0,40 σ10%; ♦ - 0,45 σ10%; ◊ – 0,50 σ10%;  □ - 0,60 σ10%. 

Extrapolating from the equation (6), obtained creep 
deformation patterns for prediction for up to 10 years can 
be sufficiently predicted using the relative creep 
deformations at time t which under constant compressive 
stress σc are calculated per unit stress and are called creep 
mobility: 

   
c

c
c

t
tI




  (14) 

where: )(tI c - comparative creep deformations at a 

fixed time t occurring due to unit stress formed at time 
t≤15 s after the start of the compression, MPa-1; 

σc – constant compressive stress at any point of time t, 
MPa; 

t – countdown. 
Knowing creep mobility )(tI c , it is allowed to move 

from stress σc to full deformations of stone wool slabs 
under compression: 

)10(  tc
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and conversely, from deformation to stress: 

,
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1
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c
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  (16) 

where: E – modulus of elasticity of relatively 
instantaneous deformation taking place at the time of 
loading of stone wool specimens, and it is equal to 

,
0

 c MPa. 

Fig. 5 presents the dependence of stone wool slabs 
creep mobility ),(tI c  MPa, on compressive stress ratio 

.
%10

 c  The corresponding creep mobility values have 

been calculated according to creep deformation values, 
which have been determined according to equation (6) 
with calculation parameters (b0 and b1) obtained on the 
basis of direct experiment (te=122 days) results.  
This dependence can be approximated by the regression 
equation: 

cI (te=122 days)=

71,2

%10

05,3 








 c  (17) 

with average standard deviation Sr=0.081 kPa and 
coefficient of determination R2=0.845 %. 

The paper attempts to analyse experimental values of 

the stone wool slabs creep deformations cr  determined 

by the 122-days direct experiment dependence on long 
term compressive stress σc=0.35σ10% kPa, and on critical 
deformation values εcr,%. 

Tested dependence has been approximated by linear 
multiple regression equation: 

crcec t  045.0074.0814.0)(   (18) 

with an average standard deviation Sr=0.104% and 

multiple coefficient of determination 
2

CRCC
R   = 0.922, 

showing experimental values variation of stone wool 
creep deformations which have been by 92% dependent 
on compressive stress changes and specific values of 
deformations (corresponding to the start of significant 
decrease in the initial firmness of the product), and by 8% – 
on other factors the influence of which has not been 
assessed yet in the adopted scheme. Fig. 6 compares 
experimental deformation values of stone wool 
specimens obtained during the direct experiment (te=122 
days) and the values calculated from the regression 
equation (18). 
 
 
 
 
 

The experimental values of c (te) and the relative 

difference ),( ec t %, of the calculated values 

)( ec t have been calculated according to the formula: 
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Fig. 5. Stone wool slabs creep mobility dependence on 
compressive stress ratio. 

Based on the data (Fig. 6(b)) it may be noted that the 
predicted values of creep deformations for the same time 
period as the direct experimental time te=122 days can be 
calculated from equation (16) using σc = 0.35σ10% and εcr 
values with the average relative error ranging from +38% 
to -16.0%. 

In the European countries it is an adopted practice to 
predict and declare creep deformations of stone wool 
slabs in 10 years period. In this paper, the performed 
long-term studies allow creep deformations εc(t) for 
extrapolation up to 10 years in accordance with the type 
of (6) empirical equations, the coefficients of which are 
presented in Table 1. In such prediction it is assumed that 
compressive creep deformations are formed under the 
influence of many factors, and the influence of individual 
factors cannot be distinguished. 

Thus, long-term creep process is not associated with 
any specific factors, but only with the passage of time, 
and extrapolations are entered into the simplest prediction 
period value introduction and the formula which 
describes the trend. Trend is a regression in time (Vaitkus 
2007). 

As already mentioned, creep deformations of the stone 
wool slab specimens can be calculated with sufficient 
accuracy for practical needs by linear multiple regression 
equation (16). According to the 10 years prediction of 
creep deformations values calculated from (6) and long-
term experimental data, the possibility to predict creep 
deformations values εc(t=10)% according to such 
indicators as σc=0.35σ10%, kPa, and the critical 
deformation εcr (determined during the direct 
experiments) has been examined. 
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a) 
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Fig. 6. Absolute values of creep deformations of stone wool 
specimens (a) and relative experimental and calculated 
according to equation (19) value differences (b): ■ - direct 
experiment (texp = 122 days) results; □ - values calculated 
according to equation (18); ○ – relative differences according 
to equation (19).  

Then, based on linear regression equation (18) we 
obtain (Fig. 7): 

,068.0034.0556.0)10( crcc t    (20) 

with the mean standard deviation Sr = 0.117 and multiple 
coefficient of determination R2= 0.745%, showing that 
extrapolated creep deformations εc(t = 10) variation is by 
75% dependent on changes in compressive stress σc and 
deformation εcr values, and by 15% - on other factors the 
influence of which has not been assessed yet in the 
adopted scheme.    

Fig. 8 presents the comparison of predicted values of 
creep deformations for 10 years period when they are 
calculated from the 65 and 122 days duration of the direct 
experiments data. As we know, according to 
(EN 1606:2013) requirements direct experiment time is 
122 days. The relative difference between the two 
predicted values is calculated according to the formula: 

,100
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)10()10(
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  (21) 

where: c (T = 10)65 days and c (T = 10)122 days – 
predicted creep deformations values for the period of 10 
years on the basis of accordingly 65 and 122 days of 
direct experiments data.  

According to Fig. 8(b) data, it can be noted that 
extrapolating from the power law (6) equation predicted 
creep deformations of stone wool slabs for the period of 
10 years can be evaluated also from 65 days of direct 
experimental data. In this case,- the additional relative 
error of predicted values, compared with 122 days 
experiment will be ranging from -17.9% to +6.4% 
(except for three distinct deviations reaching -45.8%, 
33.5%, and -31,3%). These practically acceptable values 

c (t=10) differences can be explained by the high 

coefficients of determination 2
tc

R   
values (Table 1). 
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Fig. 7. Graphical interpretation of regression dependence (20) 
when predicting creep deformations of stone wool slabs 
exposed to constant compressive load σc =0,35 · σ10% for 
10 years. 
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Fig. 8. Predicted values of creep deformations (a) and relative 
differencies of predicted values (b) calculated according to 
power law (6) equation and direct experiments data (Table 1): 
■- predicted values in accordance of 122 days data; □- in 
accordance with 65 days data; Dots mark the relative 
differencies on the basis of equation (21): ∆- 0,25 σ10%; ▲ - 
0,35 σ10%;      ○– (0,40-0,45) σ10%; ●–(0,50-0,60) σ10%. 
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These values show that for evaluation of calculated 
creep deformations empirical equations are close to the 
functional dependence )(tFc 

 
which are limited to 

specific conditions of the test. For example, the minimum 

tc  2
 values are equal to 9973.02 tcR   (see Table 1, 

series of 12 tests, the experimental duration of 122 days), 

the correlation ratio of 9986.0tcR  ≈ 1 approves the 

strict direct connection (Figure 8(a) and Figure 8(b)). 
This suggests that using the power law (6) equation, 
extrapolation can be increased up to 60 times. 

Conclusions 

1. It was found out that the creep deformations for the 
period of 10 years can be predicted on the basis of 
data of 65 days duration experiments instead of the 
122 days which are indicated in the standard. 

2. Extrapolating from the equation (6), obtained creep 
deformation patterns for prediction for up to 10 years 
can be sufficiently predicted using the relative  
creep deformations at time t which under constant 
compressive stress σc are calculated per unit stress 
and are called creep mobility (equation (14)). 

3. According to the 10 years prediction of creep 
deformations values calculated from (6) and long-
term experimental data, the possibility to predict 
creep deformations values εc(t=10)% according to 
such indicators as σc=0.35σ10%, kPa, and the critical 
deformation εcr (determined during the direct 
experiments)- has been examined. 

4. Predicted values of creep deformations of stone 
wool slabs (density of (95-108) kg/m3 and thickness 
of (60-140) mm with (3.4-6.1) % of binder) exposed 
to (0.25-0.35)σ10% load make 0.16-0.64%. 
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