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Abstract. We considered a nonlinear reduced Cosserat continuum: an elastic medium, whose translations and rotations 

are independent, the force stress tensor is asymmetric and the couple stress tensor is zero. We suggested the reduced 

Cosserat continuum as a possible model for granular medium. Granular materials are ubiquitous in our daily lives.  

They play an important role in many industries, such as mining, agriculture, and construction. We considered a nonlinear 

reduced Cosserat continuum for reference and current configurations and obtained the set of equations for each 

configuration. 
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Introduction  

It is usually assumed that the sizes of the solid particles 

are negligible compared to typical distances between the 

particles. By contrast, our concern is granular materials in 

which grain size and nearest-neighbour distance are 

roughly comparable. There is no “rotational spring” in 

granular materials keeping rotations of the neighbouring 

grains (in the simplest case, a solid is pictured as an array 

of point masses connected by springs). First scholars, 

who stated that the rotational and translational degrees of 

freedom of the grains must be treated on an equal footing, 

were L. M. Schwartz et al. (1984).  

Usually, the account of the rotational degrees of 

freedom requires the introduction of the couple stresses. 

Such models are well-known: the moment theory  

of elasticity (Cosserat Continuum), moment theory 

of elasticity with constrained rotation (Cosserat 

Pseudocontinuum). There is a vast research on these 

models and we will not attempt to review it. Practical 

application of these models requires an experimental 

determination of a large number of additional constants in 

the constitutive equations. There are many models for 

granular media (Badanin 2012, Harris 2009, Heinrich 

et al. 1996, Kurbatskiy et al. 2011). In the recent papers 

(Grekova et al. 2004, Kulesh et al. 2009) the Reduced 

Cosserat Continuum was suggested as a possible model 

to describe granular materials. In this continuum 

translations and rotations are independent, the stress 

tensor is not symmetric, and the couple stresses are zero. 

Note feature of this medium, which in the static limit 

reduced Cosserat model, turns into the classical 

continuum. The research of this model began not so long 

ago (Harris 2006, Grekova 2012a). 

Granular materials are ubiquitous in our daily lives. 

They play an important role in many industries, such as 

mining, agriculture, and construction. They clearly are 

also important for geological processes (Grekova 2012b). 

Such model systems are a useful staring point in the 

description of ocean sediments and sedimentary rocks.  

In many cases, the foundations of buildings and 

underground facilities are located in non-cohesive soils. 

Therefore, researches of the behaviour of these soils are 

of great scientific and practical interest. 

In this paper, we further develop (Lalin et al. 2011, 

2012; Zdanchuk et al. 2010) a reduced Cosserat continuum 

as a possible model for granular medium. Earlier we 

presented linear reduced Cosserat continuum equations, 

plane wave’s propagation for the isotropic case, dispersion 

curves and now we would like to present nonlinear 

reduced Cosserat continuum equations in the current and 

reference configuration.   

In the reduced Cosserat continuum each particle has 6 

degrees of freedom, in terms of kinematics its state is 

described by vector r and rotation tensor P. Rotation 

tensor is a orthogonal tensor, its determinant is equal to 1 

and is defined by 3 independent parameters. So kinematic 

state of the medium is described by fields ),( tx s
r  and

),( txs
P , where )3,2,1( sxs coordinates of the medium 

in the reference configuration (RC), t – time. Usually RC 

is selected as a known position of the body at the initial 

time t = 0. Let )()0,( ss xx Rr  . We introduce the basis

ks
k xx  /)( RR , the dual basis )( sk xR  and the 

Hamiltonian in the RC
s

s

x


 R



. 

The current position of the body at time t is called the 

current configuration (CC). We introduce the basis
ks

k xtx  /),( rr , the dual basis ),( tx sk
r  and the 

Hamiltonian in the CC
k

k

x


 r . The basis in the RC 

is not time-dependent and in the CC it is.  

The purpose of this work is to obtain the equations of 

the nonlinear reduced Cosserat continuum as Lagrangian 

description in the RC and Eulerian in the CC.  

System of equations in the current configuration 

To establish the system of equation for the CC it is 

necessary to use the following equations: 

the linear momentum balance equation 
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 

SV

dSdV
dt

d
τnv , (1) 

the kinetic momentum balance equation 

 

SV

dSdV
dt

d
)()( τnrvrωJ   (2) 

the energy balance equation: 

 

SV

dSdV
dt

d
vτnωJv )

2

1

2

1
( 2   (3) 

and the Reynolds transport theorem 

 

VV

dVAAdV
dt

d   (4) 

where ρ – the density in CC, v – the velocity vector

)( rv  , r – the radius vector, ω – the angular velocity 

vector )( PωP  , n – an outward unit normal to the 

surface S, J – the mass density of an inertia tensor, 

Π – the mass density of the strain energy,

(...)(...))...(
.





 v

t
-the material time derivative,  

A - an arbitrary scalar, vector or tensor field, V- a volume 

limited by a surface S. To simplify calculations we 

assume that the body forces are equal to zero. 

We shall combine the equation (4), the Gauss-

Ostrogradskii theorem and equations (1) and (2).  

As a result we get motion equations for the CC: 

vτ   (5) 

)( ωJωJωτ  x , (6) 

where xτ  denotes the vector invariant of the tensor τ. 

The definition of the vector invariant was given by 

Lurie (Lurie 1990). 

From equations (3) and (4) using the identity 

aAaAaA T  )(  we get 

  

V V

T dVdV )()( vτvτωJωvv   (7) 

Because V is arbitrary, using the expression (7) and the 

motion equation (5) we obtain the following relation 

ωωJvτ  )(   T
 (8) 

Then we transform the second summand in the 

equation (8) with the motion equation (7) and the 

expression 0)(   J . As a result we get 

)()( ωIτωτωωJ  TT
x

  

This equality was obtained using the expression 

)()( aBAaBA  x  with B = I (Lalin 2007). Now we 

can write the equation (8) like 

)( ωIvτ  T . (9) 

The strain state for the reduced Cosserat continuum is 

described by the strain tensor ),( txk
e . We define it for the 

CC: 
TT

PFIe   , (10) 

where F  should satisfy a relation T
RF 1 . 

Let’s differentiate the expression (10) with respect to 

time, use TT   FvF  and ωPP  TT : 

ωIvevωee   (11) 

We obtain the compatibility equation (11) for the CC, 

which holds identically if strains and velocities are 

expressed by r and P. 

After having introduced strain and stress, it is 

necessary to establish the relation between them, which is 

done through constitutive equations. Substitute the 

equation (11) in the expression (9), which lead to the 

following relation: 

)( evωeeτ   T  (12) 

Lalin (2007) in his paper showed that the expression 

BvωBB  is an objective (co-rotational or frame 

indifferent) derivative of tensor B . And that the 

expression (12) provides energy coupling tensors τ  and

e . Therefore, the constitutive equations for the CC: 

τ
e





 . (13) 

The system of equation for the CC will not be full 

without the mass conservation law (Zhilin 1996)  

0 v , (14) 

System of equation for the CC contains the following 

unknown functions: 9 stresses τ , 9 strains e , 6 velocities

v ,ω  and density ρ. As a result we have 25 unknown 

functions. Corresponding equations are: 6 motion 

equations (5), (6), 9 compatibility equations (11), 

9 constitutive equations (13) and 1 mass conservation law 

(14). In total there are 25 equations. The problem 

becomes fully set after adding the boundary and initial 

conditions. Our statement of the problem for the CC does 

not include any unknown kinematic r, P as well as the 

strain gradient F. The unknown r, P can be found by 

integrating equations rv  , PωP   after solving the 

full system of equation. 

System of equations in the reference configuration 

Tensors τ , e , J  and vectors ω , v  were considered as 

a basis for the CC. To write down the system of equation 

for the RC we need to use tensors and vectors as a basis 

for the RC. 

For the RC we need to use “rotated” velocities vector 

vPV  T  (15) 

ωPΩ  T  (16) 

The vector Ω is used in rigid body dynamic (Zhilin 

1996). There it was called the right angular velocity 

vector and is defined by the equation 

ΩPP   (17) 

For the CC tensor J was defined as follows 
T

PJPJ  0 (Zhilin 1996), where 0J  is the known 

mass density of an inertia tensor for the RC. The stress 

state for the RC for the reduced Cosserat continuum is 

described by the stress tensor 

PτFT  10




, (18) 
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where 0  is a density in RC, T
rF



 . 

The strain state for the is described by the strain tensor 

IPFE  T
 (19) 

This strain tensor is identically equal to zero when 

body moves as rigid. 

Define 0V as a volume for the RC which changes in V 

for the CC. Volumes V and 0V  consist of the same 

particles. We use the linear momentum balance equation 

(1), the Gauss-Ostrogradskii theorem and the Nanson’s 

formula 

0
10 dSdS  FNn




, (20) 

where n is an outward unit normal to the surface S, 

N is an outward unit normal to the surface 0S . Because 

0V  is arbitrary, we get 

s

T
sT

x




P
TRPTv




0 . (21) 

We transform summands in the expression (21). For 

this, we introduce an additional tensor K: 

TT
PKP 



. (22) 

Hence
T

ss

T

x

P
PK 




, because K  satisfies a 

relation s
s
KrK  . 

T
PVΩVVPVΩPVPv  )()()(   

T
x

TT
s

s

T
s

s

s

T
s

x

PTKPKTR

PKTR
P

TR









)()(

)(
 (23) 

where we use the identity 
T
xx AA   and 

k
k

x
T

KARKA  )( , that is valid for any tensor A. 

Let’s return to the equation (21) and multiply it by the 

tensor P on the right. As a result we obtain a local form 

of the linear momentum balance equation for the RC 

)()( 0 VΩVTKT  


x
T  (24) 

Now we consider the kinetic moment balancing 

equation (2). Let’s write (2) for the RC using (16), (18), 

(20), the Gauss-Ostrogradskii theorem and arbitrariness 

of the volume 0V  

)()( 00 rPTvrΩJP  T


  (25) 

We transform summands in (25)
T

PVΩVrvr  )(  . 

Also using the expression (23) we can get 

T
x

TT
PTKTrrPT  ))(()(



. 

x
T

k
Tk ))(( TIEPrPTR   

)()( 000 ΩJΩΩJPΩJP    

Then returning to the expression (25), using (24) we 

get a local form of the kinetic moment balance equation 

for the RC. 

)())(( 000 ΩJΩΩJTIE  x
T

 (26) 

Let’s differentiate with respect to time the equation 

(19). For the RC basis does not depend on time. So, using 

the opportunity to reshuffle t / and x / , we get 

vF


 T . Considering expression (17) and 0I we get 

the following relation ΩPFPE  T


  (27) 

We had transformed first summand from the equation 

(27) using (22) and (15): 

VKV

vPKVvPPvP








TT)(

 (28) 

We had transformed second summand from the 

equation (27) using (19) and finally we get  

ΩIEVKVE  )(


 . (29) 

Let’s derive an equation relating the K and Ω. 

Transposing both sides of the equation (17), we get  

)( T
s

sT

s

T
sTT

x

PKΩRPΩ

P
ΩRPΩP













 

To transform the second term we use the identity  

AbaAabAba  )()()( , which is valid for 

any a, b, A (Zhilin 1996). Then 

TTTT
PΩKPΩKPΩP  )()(


  (30) 

Let’s differentiate with respect to time (22), so we get 

)()( TTT
PΩKPKP  



 (31) 

For the RC basis does not depend on time, which leads

)()( 


TT
PP  . We equate expressions (30) and (31).  

TT
PΩKΩPK  )(


 . Hence 

ΩKΩK 


  (32) 

Equations (29) and (32) are compatibility equations in 

the RC. 

We need an additional tensor K to be able to write the 

motion equations (24), (26) and the compatibility 

equations (29), (32) for the RC. 

Lalin (2007) showed that tensors T and E  satisfy the 

equation ET   T
0  and that proves their energy 

coupling. Now we can write the constitutive equation for 

the RC as 

T
E





0 . (33) 

Unknown number increases to 33 for the RC: 

9 stresses T, 9 strains E, 6 velocities V, Ω and 

9 components of the additional tensor K. Corresponding 

equation are: 

6 motion equations (24), (26), 18 compatibility 

equations (29), (32), 9 constitutive equations (33). In total 

there are 33 equations. 
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Conclusions 

We considered the nonlinear reduced Cosserat 

continuum. The following results have been presented: 

1. Energy coupling stress and strain tensors were 

defined and used for the CC and the RC. 

2. Compatibility equations of strains and velocities 

were obtained. 

3. Two systems of equations for the RC and the CC 

were obtained. 

Why is the reduced Cosserat continuum important for 

practical use? The reduced Cosserat model can be applied 

for description of granular media. The theory of granular 

media is applicable to soil mechanics: for soils consisting 

of large particles and clay soils (Badanin et al. 2012).  

The following tasks for further research have been set: 

1. To obtain a variational formulation for the presented 

systems of equations. 

2. To study the conditions of the uniqueness of the 

solutions of nonlinear dynamic problems. 
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