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Abstract – A heuristic predictive optimization scheme for grid-

reactive heat pump operation is introduced in this paper. It is 

based on thermal demand predictions (domestic hot water, 

heating demand) and does not require any numerical 

optimization which makes it easy to implement on real hardware. 

It follows the idea to use the heat pump to overheat the existing 

hot water storage in times of cheap electrical energy 

(oversupply). This way, converting electrical into thermal energy 

allows to economically shift electrical loads and hence to react at 

grid needs. The proposed optimization scheme is evaluated in a 

simulation study based on the simulation platform TRNSYS. A 

detailed evaluation of the algorithm in different application 

scenarios has been conducted by using a comprehensive system 

model of the investigated solar heat pump system. The evaluation 

presents the impact of different characteristics of the 

incentivizing price signal as well as prediction errors onto the 

load shifting and cost saving potential. 
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I. INTRODUCTION 

Overcoming the problem of the fluctuating provisioning of 

electrical energy via renewable energy resources is seen as a 

major challenge of the future electricity grid, and shifting 

loads on the demand side is one promising solution [27]. Grid-

reactive buildings that are able to adjust their local electricity 

consumption are discussed as important parts of the future 

energy landscape (e.g. [3], [26], [30]). In this context, heat 

pumps are very interesting as they are responsible for large 

parts of the overall electricity consumption in buildings. By 

converting electrical energy to heat in times of electrical 

oversupply they offer promising ways for load-shifting; 

especially in combination with existing thermal storages. As a 

result, the building has a lower electrical demand in times 

when the grid requires it. 

Different concepts for load shifting with heat pumps are 

possible. In [22], controls based on grid frequency, energy 

exchange markets, or via direct commands from the utility are 

separated. This paper focuses on incentives derived from 

energy exchange markets where the supply and demand is 

matched, and reflected in terms of variable prices. If these 

prices are predicted some hours ahead and are communicated 

to the end-consumer, an economic stimulus is given to adapt 

the electrical demand to this signal and therefore to shift the 

electrical energy consumption (see [31] for an introduction to 

time variable electricity price tariffs). 

The concept of load shifting with heat pumps is visualized 

in Fig. 1, and a real-world realization of this concept was done 

within the project Sol2Heat [10]. In the context of a solar heat 

pump system [6], the project investigated the intelligent 

scheduling of heat pumps together with household appliances, 

considering local photovoltaic (PV) systems and variable price 

tariffs. This paper focuses on the heuristic predictive 

optimization scheme of the heat pump operation. To evaluate 

the optimization algorithm in an application-oriented 

simulation, the program logic (Java code) has been coupled 

with the simulation platform TRNSYS 17 [14], where a 

detailed simulation model of the solar heat pump system is 

available. In addition to the description of the predictive 

heuristic optimization scheme, this paper includes simulation 

results based on the solar heat pump system and two different 

pricing schemes. 

 

 
Fig. 1.  Visualization of the concept of grid-reactive heat pump operation. 

II. RELATED WORK 

Grid- or market reactive heat pump operation is a current topic 

of different research projects (e.g. [1], [4], [9], [10]), and it is 

already addressed by numerous papers. Young Jae Yu [5] 

presents a model-predictive control (MPC) approach for grid-

reactive heat pump operation which uses the building as 

thermal storage. Different prediction horizons, resulting 

operative room temperatures, and the share of renewable 

energies on the heat pump’s electricity supply are evaluated. 

Loesch et al. [19] present an evolutionary algorithm for 

scheduling the heat pump operation based on an external price 

signal, an external load limitation signal as well as a prediction 

of local PV generation. The approach is designed to be used 

within a holistic optimization, which allows to jointly schedule 

the heat pump with further electrical appliances in the 

building, such as household devices. In [8], Faßnacht et al. 

present a linear model predictive control (MPC) scheme for 

the grid-reactive operation of modulating air-to-water heat 

pumps, where the hot water storage is used as buffer for the 
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load shifting. In [15], Oldewuertel et al. summarize their work 

on a MPC scheme for building automation control, which 

takes into account an electrical price forecast. A least-square 

support vector machine is used to predict the electricity prices, 

whereas the inputs of the algorithm are prices and grid loads 

of the last day. A bilinear building model is used and the 

optimization problem is solved with a Sequential Linear 

Programming method. In [18], a MPC strategy for buildings is 

presented by Vrettos et al., where a heat pump, an electrical 

resistance heater, slab cooling, a PV system and a battery are 

taken into account. Maximum monetary savings for two price 

signals via performance bound simulations are presented and 

the impact of price steps, different length and magnitude are 

evaluated. In [21], Tahersima et al. present a hierarchical 

MPC scheme which optimizes the flow temperature of a floor 

heating system, such that the underlying single room 

controller (PI) in the room with the highest heating load is 

always working near a 90 % open valve. Beside an ambient 

temperature forecast, also a price signal forecast is taken into 

account. In [16], [20], [22], [23], [24] further control methods 

for heat or cooling supply that take into account dynamic 

pricing are presented. The feature all the presented strategies 

have in common is that a numerical optimization is needed in 

each time step to solve the problem. 

 

In contrast to the above named approaches, this paper 

introduces a predictive scheme for grid-reactive heat pump 

operation without the need of a numerical optimization. Hot 

water storage is used as heat storage capacity. 

 

III. SOLAR HEAT PUMP SYSTEM 

The predictive algorithm for heat pump scheduling is realized 

in the context of a solar heat pump system. Fig. 2 depicts the 

basic scheme of the system. The core heat generation for the 

buildings heat and domestic hot water (DHW) demand is 

supplied by a 7 kW brine/water heat pump. The only heat 

sources of the heat pump are special flat plate solar thermal 

collectors, which are equipped with ventilators on the backside 

of the solar absorber. Therefore, the collector cannot just use 

solar radiation, but also ambient air to heat the brine in the 

collector. 

 

The collectors are called solar-thermal-air (STA) collectors 

in the latter. The system is equipped with a 290 kg ice storage, 

which is used to store solar energy from the day into the night, 

to use it as energy source of the evaporator of the heat pump 

and to smooth the evaporator inlet temperatures. The STA-

collectors cannot only supply the heat pump with energy on a 

low temperature level, but also direct to a stratified hot water 

tank with heat on a higher temperature level to cover the heat 

demand for heating and DHW. 

 

The DHW is produced by an inner heat exchanger in the hot 

water storage. Therefore, the temperature in the upper part is 

held on a higher temperature level than the middle part of the 

storage. The generated heat of the heat pump is supplied to the 

upper part of the hot water storage for DHW and in the middle 

part of the storage for the heating demand. 

 

 
Fig. 2.  Conceptual scheme of the solar heat pump system. 

     In the context of [2] and [7], a detailed model of the solar 

heat pump system in TRNSYS was developed, which was 

used in this study to evaluate the proposed heuristic predictive 

optimization scheme, in an application-related simulation. 

 

IV. PREDICTIVE OPTIMIZATION ALGORITHM 

    The proposed predictive algorithm is based on the short 

term forecast (< 1 day; granularity of 1 hour) of the building’s 

heating and domestic hot water demand, the expected energy 

supply of the STA-collectors to the hot water storage, and the 

expected surplus electrical energy generated by the optional 

PV-system. Furthermore, a prediction of the market price is 

needed. Fig. 3 depicts the inputs and outputs of the proposed 

algorithm. 

 

Fig. 3.  Inputs and Outputs of the heuristic optimization scheme for heat pump 
scheduling. 

    The target of the algorithm is to run the heat pump, so that 

the operation costs of the system are minimized. This is 

achieved by running the heat pump in times when the current 

prices are low and to use the stored energy in the hot water 

storage when the current prices are high. The hot water storage 

(see Fig. 2) is a stratified storage with an inner heat exchanger 

for DHW. The upper part of the storage is held on a higher 

temperature level than the middle part of the storage to meet 

the DHW demand. Hence, the algorithm assumes that the 

system virtually has two storages. Considering a time frame 



Proceedings of REHVA Annual Conference 2015 “Advanced HVAC and Natural Gas Technologies” 
Riga, Latvia, May 6 – 9, 2015 

 

134 

between t=now and t=now+PredHorizon, the algorithm 

decides when to run the heat pump. 1 For this time frame, the 

runtime of the heat pump is scheduled so that the operating 

costs are minimized. 

 

    The heuristic predictive algorithm can be concretized by the 

following 10 steps, which are triggered every hour: 

 

1. Read in the actual measurements of the mean 

temperatures in the upper part THW (domestic hot water) and 

lower part TH (heating water) of the hot water storage, and 

the temperature of the ice storage Tice. 

 

2. Calculation of the energy amount that is stored in each 

hot water storage: 

 

 min,, HWHWHWwaterpHW TTmcQ  , (1)         

 

 min,, HHHwaterpH TTmcQ   . (2)      

 

These amounts of energy can be used in the optimization 

horizon to meet the respective energy demands for DHW 

and the heating demand, without the need of heat pump 

operation. THW,min is a setting value, whereas TH,min can be 

calculated based on the heating curve and the actual 

ambient temperature. 

 

3. Calculation of the overall energy demand for the 

respective storage (DHW and heating demand) in the 

optimization horizon, which has to be met by the heat pump 

operation. This is based on the predicted heat demand of the 

building QH,pred, the predicted DHW demand QHW,pred, the 

predicted solar thermal yield in the hot water storage 

QST,pred, and the already stored energy in the storages QHW 

and QH (see step 2). 

 

predSTHWpredHWHWHP QQQQ ,,,   (3)   

 

  1,,, predSTHpredHHHP QQQQ  (4)   

 

At this is a constant factor that divides the solar thermal 

energy yield in the upper part and the lower part of the hot  

water storage (when the hot water storage is charged 

directly by the STA-collectors, always the upper and the  

lower part are affected simultaneous). 

 

4. Approximation of the heat pump efficiency based on the 

actual measurement data. The heat pump coefficient of 

                                                           

 
1 In this study predictive horizons of 9 h and 24 h have been used (see 

section VII). But this is not an invariable rule in the algorithm. 

performance is calculated based on the Carnot cycle 

efficiency adapted by a constant2: 
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At this C,HPis the quality grade of the heat pump that takes 

the deviations of the real heat pump cycle to the ideal 

Carnot cycle into account. 

 

5. Calculation of the overall needed runtime of the heat 

pump in the optimization horizon. This takes the energy 

demand that has to be met by the heat pump (see step 3) and 

the efficiency of the heat pump (step 4) into account. The 

latter is assumed as constant over the optimization horizon: 
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HWHP
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The electrical energy demand of the heat pump compressor 

Pel,HP is also assumed as constant over the optimization 

horizon. 

 

6. Calculation of the number of timeslots needed for the 

heat pump operation within the optimization horizon. In this 

study the length of the timeslots was chosen to be 15 

minutes because of two reasons: This equals the sampling 

rate of the price signal and further results in a minimum 

heat pump runtime of 15 minutes, whereby, according to 

[29], efficiency losses due to cyclic operation of the heat 

pump can be neglected. 

 

[min]15

,HWHP

HW

t
Slots   (9)  

 

[min]15

,HHP

H

t
Slots   (10)  

 

 

7. Calculation of the costs of each timeslot in the 

optimization horizon, which would be caused by the heat 

                                                           

 
2 Note: This calculation could also be based on polynomial curves based on 

measurements of the heat pump (heat pump characteristic curves). 
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pump when running in this timeslot. This calculation takes 

the electrical power demand of the heat pump Pel,HP 

(assumed as constant), the electrical price for this timeslot 

ck, the PV surplus of local energy generation after meeting 

the household demand PVs,k and eventually a tariff for feed-

in compensation sk into account. The cost calculation for the 

slot is divided in two steps. 

 

At first, for each time slot the external electrical energy 

needed from the grid (Pgrid,HP,k) and the self-consumption of 

PV (PSC,HP,k) is calculated: 

 

)0,( ,,,, ksHPelkHPgrid PVPMAXP  , (11)  

 

 HPelkskHPSC PPVMINP ,,,, ,   (12)  

 

Second, the costs for the respective timeslot k are 

calculated: 

 

tsPtcPC kkHPSCkkHPgridkSlot  ,,,,,  . (13)  

 

The self-consumption of PV is taken into account since 

generated electrical energy that is not sold to the grid is 

related to costs due to the loss of feed-in compensation 

(opportunity costs). 

 

8. Long-term optimization: In step 7, the prices for running 

the heat pump in each timeslot within the optimization 

horizon are calculated. This results in a two column matrix 

of length N with the time slot number within the horizon in 

one column and the cost of heat pump operation in the other 

column. This matrix is sorted ascending according to costs. 

Afterwards, the third column is introduced, indicating the 

status of the heat pump within the respective time step. The 

heat pump status within this column can either be HP_off 

(initial default value), HP_DHW or HP_HEATING. Starting 

with the cheapest slot, the heat pump status is then 

alternatingly set to HP_DHW and to HP_HEATING as long 

as the number of the already chosen slots is smaller as the 

number of the needed slots within the optimization horizon 

(see step 6, SlotsHW and SlotsH). The status signals till the 

next re-optimization are saved and used for switching the 

heat pump system. 

 

9. Short-term optimization: After each long-term 

optimization, a short-term optimization considering a 

smaller optimization horizon is conducted. The proceeding 

of the two moving horizons for the long- and the short-term 

optimization is depicted in Fig. 4 (exemplary prediction 

horizon lengths). The illustration assumes a long-term 

optimization horizon of 5 hours (N=20) and a short-term 

optimization horizon of 1 hour (M=4). 

 

 
Fig. 4.  Moving optimization horizon with a long- and short-term optimization 
(exemplary prediction horizon length). 

The short-term optimization is introduced to also consider 

and shift the runtimes of potential forced starts, which are 

triggered, when the minimum temperature is reached. For 

both storages, it checks, whether the heat pump status signal 

is set to run for the respective storage within the next M 

time slots. If the heat pump is not running for the respective 

storage, it calculates whether its minimum temperature will 

be undershot within the next M timeslots based on the 

current storage temperature and the related demand 

prediction. If the minimum temperature is predicted to be 

undershot, so when 

 

min,

,

,,

H

Hwaterp

shortpredH

H T
mc

Q
T  , (14)  

or 

min,

,

,,

HW

HWwaterp

shortpredHW

HW T
mc

Q
T  , (15)  

 

the heat pump’s status is set to run for the respective storage 

in the cheapest timeslot within the next M slots, 

independent of the prior long-term optimization (i.e. the 

status signal is set to HP_HEATING or HP_DHW). First, 

this is done for the heating water storage, and then for the 

DHW storage. At this, the latter does not overwrite the first; 

if the short-term optimization resulted in the heat pump 

running for heating water, then the slot which in the short-

term optimization potentially is used for the DHW storage, 

is the second cheapest one. Priority is given to the heating 

water storage, since it is responsible for the largest part of 

the overall heat pump runtime demand. 

 

10. The minimum and maximum allowed temperatures in the 

heating water and domestic hot water storage are supervised 

continuously. When the minimum temperature in a water 

storage is undershot, the heat pump immediately starts to 

run for the respective storage, and when the maximum 

temperature is overshot, the heat pump immediately stops to 

run for the respective storage till the end of the current slot. 

The minimum temperature of the domestic hot water 

storage is a setting value (43 °C in this study), whereas the 

minimum temperature in the heating storage is calculated 



Proceedings of REHVA Annual Conference 2015 “Advanced HVAC and Natural Gas Technologies” 
Riga, Latvia, May 6 – 9, 2015 

 

136 

by the heating curve minus a hysteresis (2 K in this study). 

The maximum temperature is a setting value for both 

storages. In this study it is set to 57 °C for the domestic hot 

water part and to 55 °C for the heating water part of the 

storage. 

V. REQUIRED FORECAST MODELS 

   As illustrated in Fig. 3, the predictive algorithm uses short-

term predictions of the heating water demand, the domestic 

hot water demand, and the electrical household demand, the 

solar thermal yield in the hot water storages, and the electrical 

supply of the local PV system. Prediction models for all these 

values have been developed and investigated within the 

project Sol2Heat. At this, the forecast models of the demand 

side (heating and DHW demand, electrical household demand) 

and the solar thermal yield model have the same basic 

structure: A matrix is set up, in which the measured recursive 

mean value of the relevant variable is saved. For the DHW 

prediction, e.g., the matrix is divided into j = 7 parts for each 

day of the week, and into i = 96 parts for each 15 minute slot 

of the respective day. The matrix is filled with the measured 

(heat meter) mean value of the DHW demand in the past for 

each combination of day (i) and time of day (j): 

 

















jii

j

QQ

QQ

,1,

,11,1







 (16) 

 

   The mean value of the respective measured variable in 

equation 16 is further recursively adapted after each new 

measurement: 

 

  actualoldjinewji QQQ   1,,,,  (17) 

 

   At this,  is a weighting factor in the range [0,1) which 

balances the weight of the historical and newly measured 

values. The resulting matrix is then used for the predictions. 

For the prediction of the PV yield, a static model based on 

results of the standard collector tests has been developed. 

 

   In this study perfect prediction data is used for the basis 

cases. In the second step, the impact of forecast deviations on 

the simulation results is evaluated. 

VI. INCENTIVIZING PRICE SIGNALS 

   Two different price signals have been used in this simulation 

study: (1) A fully market driven price signal based on the 

German EPEX Intraday 15 minute spot prices [11], and (2) a 

price signal based on a real German tariff. For the latter, two 

different variations have been investigated (tariff as offered 

today vs. same tariff complemented by variations of the 

Germany EPEX Intraday spot prices which are directly 

forwarded to the customers). 

A. Pure Market Driven Price Signal (MDPS) 

   This price tariff is based on the EPEX Intraday 15 minutes 

spot prices in Germany 2014. Therefore, the 15 minute 

Intraday prices between 01/01/2014 and 11/08/2014 have been 

extracted from [11]. To get a one year period, the extracted 

profile has been duplicated, linked together and appropriately 

cut. The prices of the resulting one year profile have been 

multiplied by 10, which results in a price signal with an 

assumed mean value of 31.85 €cent/kWh and a standard 

deviation of 20.1 €cent/kWh. Fig. 5 depicts the histogram of 

the generated price signal. The price signal reflects the 

fluctuations of the German 15 minute Intraday market, but the 

mean height of the price is assumed. This price signal was 

used in this study as a theoretical example to evaluate the 

potential for savings with price signals of high variance. 
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Fig. 5.  Histogram of the assumed market driven price signal (MDPS). 

   It has to be noted that a price signal like that can only be 

realized when the actual static costs of the electricity price 

would also be coupled according to the supply and demand 

balance at the electrical energy exchange market (whereby 

they would also vary in time, dependent on the market). In 

Germany these static costs mainly consist of grid fees, 

apportionments according to the Renewable Energy Act 

(EEG) as well as the Combined Heat and Power Act 

(KWKG), taxes, and concession fees (see e.g. [28]). 

 

B. Real Price Signal based on a today existing tariff (RPS) 

   The basis of this tariff is a real available electricity tariff for 

heat pumps and household demands in Germany. 3 The tariff is 

separated into a high and a low tariff part. 

 

TABLE I 

HIGH AND LOW TARIFF PART OF THE REAL TARIFF [13] 

TIME PRICE 

22:00-06:00 17.32 €cent/kWh 

Otherwise 25.32 €cent/kWh 

 

 

   Two cases of this tariff have been investigated: First, exactly 

the tariff as offered today (RPS-constant). This allows 

                                                           

 
3 Casa XL tariff of the supplier Energiedienst AG (www.energiedienst.de). 

The static yearly base price of this tariff has been neglected. Just the 

consumption price has been taken into account. 

http://www.energiedienst.de/
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evaluating the potential of the algorithm in a realistic context.  

Second, the basis tariff supplemented by the variations of the 

EPEX Intraday 15 minute spot prices (RPS-fluctuating). This 

corresponds to a forwarding of the energy exchange market 

fluctuations to the customer. Therefore, the basic price signal 

in Table I is adapted according to the following formula: 

 

IntradaykIntradaykBasickk cFcFcc ,,,   (18)  

 

where ck is the resulting cost in the actual time step, ck,Basic the 

cost of the tariff in Table I, ck,Intraday the actual cost of the 

Intraday spot market, Intradaykc ,  the mean costs and F a factor 

for justifying the fluctuations of the resulting signal (in this 

study F=1 has been used). Fig. 6 depicts the histogram of the 

derived price signal. 
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Fig. 6.  Histogram of the price signal based on a real tariff supplemented by 
variations of the 15 minute Intraday spot market (RPS-fluctuating, F=1). 

   The mean value of the adapted RPS (RPS-fluctuating) is the 

basic tariff itself (RPS-constant). The adapted RPS results in 

overall much lower fluctuations than the MDPS. 

 

VII. SIMULATION RESULTS 

   The system model of the solar heat pump system described 

in Section II has been modeled in the simulation platform 

TRNSYS 17 [14]. The predictive optimization algorithm 

described in Section III has been implemented in Java and is 

currently being ported to a hardware controller regulating the 

solar heat pump system. In order to evaluate the algorithm in 

different scenarios, a new TRNSYS type for coupling the 

simulation platform with the Java-based program logic has 

been developed and published open-source [12]. 

 

   At first, three reference simulations (different heating 

demands) have been realized with the standard control. 

Standard control means that recharging of both the upper and 

the middle part of the hot water storage via the heat pump is 

controlled by a standard hysteresis control, whereby priority is 

given to the DHW storage. In all simulations the boundary 

conditions in Table II have been used. The heat demands as 

well as the hot water tapping were read as time series. 

 

 

 

TABLE II 

BOUNDARY CONDITIONS OF THE REFERENCE SIMULATIONS 

CONDITION VALUE 

Weather data Würzburg, Germany4 

DHW demand 2000 kWh (45 °C) 

Heating demand 5462 / 7281 / 9047 kWh 

Heating curve 35 °C / 30 °C 

STA-collectors 5 / 11.45 m² 

Nom. heat pump 

power 

7 kW 

Hot water storage  1000 l 

Ice storage 290 kg 

 

   For the simulations with the RPS, the long term optimization 

horizon was set to 9 h and the short term horizon to 2 h, 

whereas in the simulations with the MDPS the optimization 

horizons were set to 24 h and 5 h. A good choice of the 

horizons proved to be dependent on the price signal. 

Table III summarizes some results of the simulations with the 

standard hysteresis-based control (with RPS1=RPS-constant, 

RPS2=RPS-fluctuating). 

 

TABLE III 

SELECTED RESULTS OF THE REFERENCE SIMULATIONS 

HEATING 

DEMAND 

[kWh/a] 

DHW 

YIELD 

[kWh/a] 

SHP EL. 

DEMAND5 

[kWh/a] 

COST WITH 

MDPS/RPS1/RPS2 

[€/a] 

5462 1991 1880 575 / 413 / 412 

7281 1988 2475 751 / 537 / 535 

9047 1987 3041 915 / 656 / 656 

 

A. Simulation results with the market driven price signal (MDPS) 

   Fig. 7 depicts simulation results of an example day in 

January based on the standard control. It can be seen that the 

heat pump operation is independent of the price signal and is 

purely heat demand driven. The heat pump is running so that 

the storage temperatures are kept between the minimum and 

maximum temperature. 
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Fig. 7.  Simulation results of an example day in January with the standard 

control (hot water = upper part and heating water = lower part of the hot water 
storage6). 

                                                           

 
4 Note: The weather data is taken from the Meteonorm dataset [25], which 

is a generated profile. This means that the weather data and the price signal 
are not of the same year. It is assumed that the effect on the simulation results 

is relatively low as of today. Nevertheless, in future work weather data and 

price signal should be of the same period to evaluate their mutual influence. 
5  The whole system, exclusive the heat distribution and the condenser 

circle pump have been taken into account. 
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   Fig. 8 depicts simulation results of the same day, but with 

the predictive control of the heat pump presented in chapter 

III. 
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Fig. 8.  Simulation results of an example day in January with the predictive 
control using the MDPS. 

   Now the heat pump operation is shifted to the low price 

valleys most of the time. Sometimes the heat pump runs when 

the temperature boundaries in the hot water storage are 

violated7 (e.g. between 18 and 19 o’clock). Between 12 and 16 

o’clock the hot water storage is superheated to bridge the 

following high-price period. 

 

   Fig. 9 depicts the operation costs with the MDPS, and Fig. 

10 – the achieved operation cost reduction of the solar heat 

pump system in the simulations. 
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Fig. 9.  Operation costs of the solar heat pump system using the MDPS. 

   It can be seen that with a rising heat demand, the relative 

reduction potential gets lower. This is due to the fact that in 

cases of a higher heat demand, the heat pump has to run longer 

times and therefore the shifting potential is diminished. Then, 

the heat pump more often has to run in high price times in 

order to satisfy the building’s heat demand. 

This effect is mainly influenced by the fraction of the heat 

pump power and the building’s heating load. With rising heat 

pump power and constant heating load of the building, the 

shifting potential grows. This means that the results (cost 

reduction potentials) in this paper are just valid for the 

combination of the solar heat pump system and the building 

loads, and that they cannot be generalized. It further connotes 

                                                                                                      

 
6 Both temperatures are mean values in this part of the tank. The heating 

flow temperature therefore is higher than the depicted storage temperature. 
7 See chapter III point 10 of the algorithm. 

that oversized dimensioning of heat pumps is beneficial for 

Demand Side Response. Finally, it is worth mentioning that 

potential analyses investigating the effect of load shifting with 

heat pumps onto the market and/or grid have to take into 

account that in cold temperature periods a significant amount 

of heat pumps are (nearly) not available for load shifting, due 

to high needed runtimes to meet the heat demand of the 

building. 
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Fig. 10.  Reduction in operation costs for the solar heat pump system with the 
optimized control using the MDPS. 

 

   Fig. 11 depicts the electrical energy demand of the solar heat 

pump system with the standard and the predictive control. 

With the predictive control, the electrical demand of the 

heating system itself increases (between 2 % - 6 %). This is 

mainly caused by efficiency losses of the heat pump due to 

higher system temperatures through overheating of the hot 

water storage. 
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Fig. 11.  Electrical demand of the solar heat pump system with the standard 

and the predictive control using the MDPS. 

B. Simulation results with the signal based on a real tariff (RPS) 

   Fig. 12 depicts simulation results of a day in January with 

the predictive control and the adapted RPS-fluctuating.8 As in 

Fig. 8, it can clearly be seen that the heat pump mileages are 

shifted to the low price valleys. It also can be seen that the 

price fluctuations with the adapted RPS-fluctuating are much 

lower than of the MDPS. 

 

                                                           

 
8 Different day as in Fig. 7 and Fig. 8. 
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Fig. 12.  Simulation results of an example day in January with the predictive 
control using RPS-fluctuating. 

   In the morning with a longer low price period the 

temperatures in the upper and the lower part of the hot water 

storage are superheated to utilize the tariff. This leads to 

storage losses and efficiency losses of the heat pump, due to 

higher operating temperatures. This effect, in combination 

with the relative small fluctuations of the price signal, results 

in overall much lower savings for the end consumers. Fig. 13 

depicts the simulated operation cost and shows that the 

predictive control outperforms the standard control for all 

demand scenarios (cost difference from standard to predictive 

control between 3.8 to 7.4 %). It also can be seen that in case 

of the standard control, nearly no difference between the RPS 

variants can be observed. Hence, the comparisons in the latter 

are all realized with the standard control - RPS constant / 

Predictive control - RPS-fluctuating combination.  
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Fig. 13.  Operation costs for the solar heat pump system with the standard and 

the predictive control using both RPS variants. 
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Fig. 14.  Reduction in operation costs for the solar heat pump system with the 

optimized control using RPS -fluctuating . 

   Fig. 14 shows the operation cost reduction of the simulations 

using the RPS-fluctuating. As already described for the MDPS 

scenario, it can be seen that a higher heating demand also 

decreases the percentage operating cost reduction since the 

ability to utilize price valleys is minimized. 

 

  Although the savings here are small, the goal of the 

adaptation of the heat pump operation to the grid signal is 

fully achieved. If in practical applications a price signal with 

higher fluctuations cannot be realized, an alternative way to 

compensate the end consumer for their adaptation could be 

bonuses for heat pumps which provide this mechanism. 

 

C. Influence of the prediction accuracy 

   For the proposed predictive algorithm, predictions of the 

heat and hot water demand and of the solar thermal demand9 

are used. By now perfect prediction data have been used. To 

evaluate the influence of the prediction accuracy on the 

control performance of the predictive controller, simulations 

with disturbed prediction data have been conducted. 

 

  Fig. 15 depicts the operation cost reductions in dependence 

of the prediction error of the heating demand. For the 

simulations, the perfect prediction demand was supplemented 

by a static error. At this, the incorrect prediction for each time 

step is calculated by: 

 

).1(ˆˆ
,, errorQQ tperfectterror   (19) 

 

   In Fig. 15 it can be seen that when a lower heat demand is 

predicted as actually occurred in reality, the reduction of the 

operation costs decreases. This can be explained by the fact 

that the hot water storage is not superheated enough in high 

price times so that the heat pump has to run at high costs due 

to approaching violations of the minimal allowed hot water 

storage temperatures. 

 

0%

1%

2%

3%

4%

5%

6%

7%

8%

-50% -40% -30% -20% -10% 0% 10% 20% 30% 40% 50%

R
ed

u
ct

io
n

 o
p

er
a
ti

o
n

 c
o
st

 [
%

]

Prediction error heating demand [%]

Operation cost reduction (all cases, RPS)

5462 kWh

9047 kWh

7281 kWh

 
Fig. 15.  Reduction in operation costs for the three evaluated heat demands in 

dependence of the static prediction error (predictive control using RPS-

fluctuating). 

   In the two cases with lower heat demand, a higher predicted 

heat demand than actually needed leads at the beginning to an 

                                                           

 
9  Simulations with an additional electric PV system have not been 

conducted in this study. 
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increase in savings. This can be explained by an improved 

usage of the variable price tariff, and indicates still possible 

improvements for the heuristic. One reason for that is that 

storage losses are at the moment not accounted for in the 

algorithm, whereby the heat pump always produces slightly 

less heat as finally needed. However, in case of the 9047 kWh 

yearly heat demand, the saving potential immediately 

decreases with wrong predictions. 

 

   Fig. 16 depicts the operation cost reduction in dependence of 

the static error of the heat demand prediction, now for the 

simulations with the MDPS. The results show qualitatively the 

same behavior. 
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Fig. 16.  Operation costs reduction for the three evaluated heat demands in 
dependence of the static prediction error (MDPS; connection between points 

just for visualization). 

   In summary it can be stated that the influence of wrong 

predictions on the simulation results is low and that with a 

large constant prediction error of 50 %, in all investigated 

cases savings still could be achieved. 

 

   So far we investigated the impact of constant prediction 

errors with a constant deviation of ± x %. In addition to this, 

the impact of a random error according to a predefined 

standard deviation based on the perfect prediction is 

investigated. A random prediction error means that randomly 

either a too high or a too low demand is predicted, whereby 

predictions of demands lower than 0 are excluded. A too high 

prediction results in overproduction of thermal energy which 

in turn results in an inefficient consumption of the electrical 

energy, and a too low prediction results in inability to schedule 

the heat pump to price valleys. 

 

   Fig. 17 shows the impact of random prediction errors onto 

the operation cost. The x-axis describes the percentage size of 

the prediction error based on the perfect prediction by means 

of the coefficient of variation of the introduced random error. 

 

  At this, the coefficient of variation is calculated by the 

standard deviation of the prediction error divided by the mean 

hourly heat demand (in the heating season): 

 

 

H

prediction

Q
CV


  [%] .                   (20)   
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Fig. 17.  Operation cost reduction in dependence of the random prediction 

error (connection between points just for visualization). 

 

   Table IV depicts the standard deviation for different 

coefficients of variation and different yearly heat demands. 

 

TABLE IV 

STANDARD DEVIATIONS   OF THE RANDOM PREDICTION ERRORS 

CV [%] 5462     

[kWh/a] 

7281 

[kWh/a] 

9047 

[kWh/a] 

13 % 

31 % 

61 % 

90 % 

116 % 

172 % 

0.2 kWh 

0.49 kWh 

0.98 kWh 

1.44 kWh 

1.9 kWh 

2.74 kWh 

0.16 kWh 

0.39 kWh 

0.78 kWh 

1.15 kWh 

1.5 kWh 

2.19 kWh 

0.12 kWh 

0.29 kWh 

0.59 kWh 

0.86 kWh 

1.12 kWh 

1.65 kWh 

 

   In Fig. 17 it can be recognized that the operation cost 

reduction decreases with an increased random prediction error 

for the heat demand. However, the influence of the random 

prediction error onto the saving potential is small. Significant 

effects can only be observed at errors higher 100 % (CV). The 

proposed algorithm, therefore, seems to be robust against the 

prediction quality. 

 

VIII. SUMMARY AND OUTLOOK 

   In this paper a heuristic predictive optimization scheme for 

grid-reactive heat pump scheduling is proposed. The algorithm 

is realized without the need of any numerical optimization and 

can therefore be realized easily and with low computing 

capacity. The algorithm is evaluated in combination with a 

real solar heat pump system. A simulation study is presented, 

in which the heat pump shifting is proved qualitatively. 

Furthermore, saving potentials for different assumed price 

signals have been quantified. 

 

   It was shown why the shifting potential of the individual 

system depends on the ratio between the heat pump power and 

the building’s heating load. Therefore, the presented results 

cannot be generalized. In further steps, results in dependence 
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of a dimensionless number describing this ratio should be 

generated to get more generalizable results. Furthermore, in 

future work the weather data should be of the same time 

period as the price signal because the first has influence on the 

second. 

 

   Finally, an analysis of the effect of prediction errors that are 

used as input for the algorithm was provided. It was presented 

that prediction errors of the building’s heat demand result in 

small effects on the results of the predictive control. Even with 

very high errors (± 50 %), savings still could be achieved. The 

next step in this context is the evaluation of combinations of 

errors for different predictions (heating demand, DHW, and 

solar thermal yield). 
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